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State Feedback Integral Control by 
Velocity-Based Multiple Model Networks 

Ruiyao Gao, Aidan O’Dwyer, Séamus McLoone and Eugene Coyle 

Abstract: Velocity-based (VB) multiple model networks have 
advantage of capturing dynamics of nonlinear systems 
comparing with conventional multiple model networks, for 
they build a direct relationship between the nonlinear system 
and the VB linearisation. To have the best use of modelled 
dynamic information for the controller design, this paper 
proposes a novel controller design approach, which 
associates an integral action with state feedback in local 
controller design. It overcomes the difficulty in the 
implementation of the velocity-based approach, which 
normally involves deducing the differential signal. It holds 
continuity with linear control theory in the analysis of the 
overall system and brings the potential to automatically 
design a controller with guaranteed performance and stability.   

I. Introduction 

In the analysis of nonlinear systems, to achieve good 
performance (for example, speed and accuracy) and 
robustness, it is desirable to derive an accurate and 
meaningful model of a given practical plant i.e. a model that 
captures the key dynamics of the plant in the operational 
regime of interest and provides transparent insight into the 
nonlinear systems. The last decade has shown an increase in 
the use of local model representation of nonlinear dynamics, 
such as gain-scheduled control ([1]), fuzzy logic systems 
([2]-[3]), and local model (LM) networks ([4]), in which the 
locally valid sub-models are easily interpreted, and also the 
weighted sum of the local sub-models provides a qualitative 
high-level description of the nonlinear system. These 
approaches have the advantage of continuity with linear 
systems, so that well developed control methods and theory 
can be employed for general nonlinear systems.  

However, recent research ([5]-[6]) has questioned the ease of 
interpretability of the multiple model frameworks for 
nonlinear systems and presented a novel class of blended 
multiple-model networks, i.e. velocity-based (VB) multiple 
model networks, in which the global dynamics are directly 
related to the local models employed. The velocity-based 
analysis and design framework associates a linearization with 
every operating point of a nonlinear system, not only the 
equilibrium operating points. The relationship between the 
nonlinear system and its VB linearisation is direct. Moreover, 
the underlying sub-models are continuous, velocity-based 
and linear, thus maintaining the continuity with existing 
linear techniques, which are well developed for analysis and 
controller design. Meanwhile, analytical results based on a 
complex nonlinear continuous stirred tank reactor (CSTR) 

process show that the velocity-based approach is ideally 
suited to the development of local controller (LC) networks 
([7]).  

Although the VB approach shows significant advantages in 
embodying the dynamics of the nonlinear systems, not many 
control applications have been developed based on VB 
multiple model networks, though there are some papers 
available ([8]-[9]). This is due to some difficulties in practical 
implementation that engineers have to face, for example, the 
differential realization of the controller input signal and the 
‘drift’ problem of steady state errors. 

This paper proposes a novel controller design approach based 
on the VB multiple model networks via the application of 
integral controllers. This approach skilfully employs the 
integrator to eliminate the need for differential signal of the 
controller input. The solution locally incorporates an integral 
control term in the feedback loop similar to that used in PID 
controllers. Meanwhile, the state observer is applied to adjust 
the ‘drift’ problem of steady state errors in the feedback loop. 
An illustration on a CSTR process highlights the feasibility 
and simplicity of the proposed approach in the application of 
VB multiple model networks to the control of complex 
nonlinear systems. 

The paper is organised in the following sections. Section 2 
briefly outlines the continuous-time VB multiple model 
network approach. Section 3 develops the state feedback 
integral controller based on the VB multiple model network. 
In section 4, the simulation results are given for a plant 
CSTR. Finally, the paper ends with some conclusions and 
suggestions for future work in section 5. 

II. VB Multiple Model Networks 

Consider the general nonlinear state space system, with state 
vector x  and input u : 

                         ( ) ( ) ( )( )t,utxftx =&  
                              ( ) ( ) ( )( )t,utxgty =                  (1) 
where , input . Linearizing (1) about an 
operating point ( ) and keeping only the linear terms 
yields: 
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Notice that if the operating point ( ) is an equilibrium 
point of the system, =0. This is the case for 
conventional local model (LM) network models, although 
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there are some contributions on off-equilibrium LM networks 
available ([10]). However, it is not necessary to linearize the 
system at the equilibrium point for the VB multiple model 
network, which allows linearization of the system at any 
instant operating point. 

Defining ( ) ),(,0 00
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equation (2) can be rewritten as  
                              000 auBxAx ++=&                       (3) 
where . Differentiating equation 
(3) with respect to time gives the linear velocity-based 
system  
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With the appropriate initial conditions, equations (2) and (4) 
give identical solutions, and therefore there is no 
approximation at this stage. Equation (4) establishes a direct 
relationship between the dynamics of the VB form of the 
nonlinear system and the VB linearisation near an operating 
point. Furthermore, members of the family of VB 
linearisation functions are all linear, which provides 
continuity with established linear theory and methods.  

A velocity-based, blended, multiple-model system is formed 
by weighting several velocity-based linearized models as 
follows: 
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( ii ux ,~  is the freezing point of the ith  local model:  
                            ( ) ( )uuxBxuxAx iiiiii &&&& ,~,~ +=                 (6) 
in which x  is the state vector of the linearization function at 
( ii ux , )~ . The normalised weighting function is given by 
( )ψρ ~

i , which is most often taken as Gaussian functions and 
ψ~  is the scheduling vector defined by states, system input 
and/or output. Now we consider the dynamics of the blended 
system at the operating point ( )00 ,~ ux . The velocity-based 
linearized form of (5) at ( )00 ,~ ux , is simply obtained by 
freezing the validity function ( )ψρ ~

i  at the operating point 
and leads to the following linear system: 
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With the appropriate initial conditions, the solution to (7) is 
initially tangential to the solution of the velocity-based 
multiple model system in (5). The dynamics of the multiple 
model system local to an arbitrary operating point are 
therefore the same as the dynamics of the corresponding 

frozen-form linear system at the same operating point. 
Rewriting (7) as 

                ( ) ( ) ( )( )uuxBxuxAx iiiiii
i

i &&&& ,~~,~~~
0 +ψρ=∑         (8) 

Equation (8) clearly highlights this direct relationship 
between the frozen-form (7) of the velocity-based blended 
system and the underlying local models (8) at ( )00 ,~ ux . Thus, 
at any arbitrary operating point, the global dynamics of the 
multiple model system are described by a straight-forward 
weighted sum of the local model dynamics. Further detailed 
theoretical analysis of the velocity-based nonlinear 
representations can be found in ([6], [7]). 

III. State Feedback and Integral Control 

Originally, integral action was employed in controller design 
to overcome the problem of steady state errors. In many cases, 
it is difficult to obtain an accurate value for the plant gain, in 
part, because plants are typically nonlinear and the plant 
model is linearized at a particular point. Therefore, steady 
state errors will result even though the model is sufficiently 
accurate for good feedback controller design. The solution is 
to include an integral term in the controller design. 

The objective of introducing integral action here has another 
advantage, which is that it simplifies the implementation of 
the controller design in practice, based on VB multiple model 
networks. No numerical differential is needed for 
implementation of VB linearized feedback controllers, so no 
approximation is needed at this stage. Therefore, the 
controller design has the best use of dynamic information 
available from the VB multiple model networks, which 
represent the entire dynamics of the nonlinear system. 

For each VB local model, a state space integral controller can 
be designed with the purpose of achieving satisfactory 
dynamic response in terms of rise-time, overshoot, settling 
time or other measures of transient response. A general 
structure of an integral controller is shown in Figure 1. 
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Fig. 1 Conventional state feedback integral controller 

Given a linear system as  
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Recall the velocity-based linearization local model (6), for 
the ith VB local model, we rewrite the equation (6) as follows 
with definition xw &= , 
                                                     (12) uBwAw ii && +=

Let , in which . An integral 

controller can be designed to satisfy some specifically 
assigned requirement using the above method. Then a little 
change can be made from Figure 1 to Figure 2, in which the 
system input signal is a step signal rather than the differential 
of it i.e. an impulse input signal. 
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Fig. 2 The ith local velocity-based integral controller 

As for the blending VB multiple model networks, under the 
definition of xw &~= , equation (7) is rewritten as 

                                     (13) uBρwAρw i
i

ii
i
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It should be emphasized that the VB multiple model 
networks do not have their own local states; instead, they 
share a ‘common’ state defined by the controller state vector 

 as determined from (12). The controlled closed-loop 
system is described by 
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Employing the stability results discussed in ([3]), the stability 
of system (14) can be investigated. If there is a common 
definite positive matrix P existing for each local feedback 
system, the overall closed-loop system is stable and it 
stabilizes to the origin. This shows another advantage of the 
VB approach over the conventional affine LM network, 
which is a bounded system generally ([11]). The overall 
closed-loop system is shown in Figure 3. 
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Fig. 3 Velocity-based controller network  

When the VB integral controller network is applied to the 
plant, we propose a framework as in Figure 4, which 
introduces an observer to the modelling loop. The velocity-
based multiple model networks have a weakness in static 
modelling accuracy, for there are steady state errors existing 
([7]), although the VB approach shows an attractive 
capability in capturing the dynamics of nonlinear systems. 
Moreover, these steady state errors accumulate as the 
simulation continues and the VB multiple model outputs drift 
away from the nonlinear system output. So, it is desirable to 
bring the VB multiple model outputs back to the proper 
operating point when we design a model-based controller as 
shown in Figure 4. 
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Fig. 4 VB controller network application to a plant 

IV. Illustration 

A. CSTR Plant 

In simulation, the continuous stirred tank reactor (CSTR) is 
considered in a case study. The process model consists of two 
non-linear ordinary differential equations ([12]),  
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It is a single input, single output process, where the input is 
the flow rate of a coolant  and the output is the 
concentration of a product compound . The reaction is 
exothermic which changes temperature output T(t) by 
adjusting the effluent flow rate . The induction of a 
coolant allows manipulation of the temperature and, hence, 
control of the concentration. The model parameters defined, 
and the nominal operating conditions are shown in table 1. 
The objective of the controller design is to control the 
concentration output C(t). 

( )tqc

)(tC

)(tqc

Table 1.  Nominal CSTR operating conditions 

fq = 100 l/min, product flow rate 01.02 =K /l  , constant 
fC =1 mol/l,input concentration K3=700 l/min. constant              

cfT =350K, temperature of coolant fT =350K, input temprature 

R
E =104 K, activation energy K1=1.44*1013 Kl/min/mol,         

10
0 10*2.7=K min-1, constant V =100 l , container volume 

The CSTR plant is highly nonlinear with exponential terms 
and product terms. Furthermore, open-loop step tests show 
that the output concentration responses vary from over-
damped to under-damped, indicating the variable dynamics in 
the CSTR process.  Figure 5 is the step response of 

concentration output  when the coolant flow rate  
varies from 85 l/min to 111 l/min.  

)(tC )(tqc
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Fig. 5 Dynamic response of the CSTR plant 

B. Simulation Results 

The model used here consists of two nominated velocity-
based local models as shown in ([7]), each corresponding to a 
certain range of the operating regime. These two local models 
are obtained by freezing the nonlinear velocity model at the 
appropriate linearisation points: 

min/0.90,7522.448,/062.0 111 lqKTlmolC cooo ===

min/0.110,9487.432,/1298.0 112 lqKTlmolC cooo ===  

in which  ( ) denotes the linearisation point of the 
 local model. The integral controller design is carried out 

based on the controller structure outlined in section 3. The 
first local controller corresponding to the velocity-based local 
model at ( ) is designed to give a dominant set of 
closed-loop poles with a settling time of approximately 0.5 
minutes, and the second local controller corresponding to the 
velocity-based local model at ( ) is designed to give 
a dominant set of closed-loop poles with a settling time of 
approximately 0.25 minutes. The corresponding gains 
designed are as follows: 
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co
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11K = 26285; = 25344; 12K
]5806.624651.17[01 −−=K ; 

2.416[02 −=K  18807]. 

jiK  denotes the jth gain for the ith local model. Two sets of 
step changes are designed in the relatively over-damped 
operating regime (C(t)<0.1) and in the relatively under-
damped operating regime (C(t)>0.1). The simulation results 
are shown in Figure 6. 
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(a)      Over-damped operating regimes 
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(b)      Under-damped operating regimes 

Fig. 6 Closed-loop step response 

The tracking performance of the concentration output and the 
temperature output is reasonably good for both over-damped 
and under-damped operating regimes. Both the concentration 
outputs and temperature outputs are able to follow the step 
changes in less than 0.5 minutes. As expected in the design 
specification, in Figure 6 (a), the response generally takes 
longer to follow the step changes than in Figure 6 (b). 
Although the response in Figure 6 (b) shows a little overshoot, 
it settles down quicker than in Figure 6 (a) generally. 
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In addition, the regulation performance of the proposed 
integral controlled system based on VB multiple model 
networks is examined by adding pulse disturbances to the 
system. The simulation result is shown in Figure 7. 
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Fig. 7 Regulation test of closed-loop system 

It is worthwhile to notice that only the change in the 
disturbance affects the concentration output. The 
concentration output goes back to the set point quickly after a 
tiny vibration, which is very limited, when the disturbance 
change occurs. 
Another simulation example is shown in Figure 8, which 
compares the regulation performance of the proposed integral 
controlled system based on the VB multiple model networks 
with the gain-scheduled local controller (LC) network 
proposed in ([13]). Obviously, the integral controller based 
on VB multiple model networks allows much better 
robustness performance compared with the gain-scheduled 
local controller networks. As in figure 7, only the up/down 
edge of the impulse affects the concentration output, whose 
change is of very low amplitude. This result also, in part, 
demonstrates the advantage of the velocity-based 
linearization, which is not only applied at the equilibrium 
point but at any operating point, in capturing the dynamics 
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instantly, so that the instant change of system dynamics can 
be fed back to the closed-loop and be properly controlled. 
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Fig. 8 Comparison of regulation performance  

The solid line is from the integral controlled system 
based on VB multiple model networks and the 
dashed line is from the gain-scheduled LC network 
controlled system. 

V. Conclusions 

State feedback controller design has been widely applied in 
control. The novel element of the proposed approach is that it 
introduces a combination of an integral action and the state 
feedback control, for the controller design based on the VB 
multiple model networks. It skilfully utilizes the integral 
action to compensate for the weakness of differential action, 
which is normally not feasible in practical implementation 
but is required for the velocity-based approach. This 
approach shows simplicity in controller design and continuity 
with the well-established linear control methods and theories 
for controller design and analysis.   
Moreover, the proposed integral controller design approach 
based on VB multiple model networks shows excellent 
trajectory tracking performance and strong robustness in 
application. This promising advantage is convincing when 
evaluating the potential of the application of VB multiple 
model networks in the control of nonlinear systems. 
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