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Figure 37. Effect of salt and osmotic stress on seed germination in a peroxidase over-expressing
tobacco line

Germination frequency of seeds from a homozygous tobacco line overexpressing the prvd gene (4RB),
and wild type tobacco seeds, was determined under salt and osmotic siress after 1 week. MS medinm
was supplemented with: 250 mM NaCl, 250 mM KCl or 470 mM Mannitol. Germination was
determined when radicle and green cotyledons were visible, Data are the means from three independent

plates
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Figure 38. Effect of salt and osmotic stress on tobaceo seed germination

Genmination of seeds from homozygous tobacco line overexpressing the prx§ gene (4B), and wild type
tobacco seeds, under salt and osmotic stress, was determined after 3 weeks. MS medium was
supplemented with: 250 mM NaCl, 250 mM KCl or 470 mM Mannitol. Germination was determined

when radicle and green cotyledons were visible. Data are the means from three independent plates.
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Figure 39. Appearance of germinating tobacco seeds, and seedlings, exposed to salt or osmotic

stress

The photograph illustrates the germination of seeds from wild type tobacco and transgenic tobacco line

4B overexpressing the prx8 gene after two weeks. MS medium, in 9 cm petri dishes, was

supplemented with: 250 mM NacCl, 250 mM KCI or 470 mM Mannitol.
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Figure 40, Effect of metal ions on tobacco seed germination

Germination of seeds from transgenic plants 4B and wild type tobacco seeds under metal stress
conditions after 3 weeks. Seeds were germinated on MS medium supplemented with 5 mM (A),or 10
mM (B) ZnCl, or MnCl,, Germination was considered when radicle and cotyledons were visible. Data

are the means from three independent plates.
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CHAPTER 4
DISCUSSION
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4.1 Introduction and expression of a barlev peroxidase sene into transeenic
A =

" tobacco and apple

For this investigation we wished to use a gene for which the peroxidase product is
targeted to the cell wall, where it is most likely to influence development and defence
responses, in contrast to carlier transgenic studies with horseradish peroxidase, which
is retained in the cytosol (Kis et al. 2004). The choice of the barley gene, prx8 was
based on the findings of Dr Seren Rasmussen and colleagues in Copenhagen. The
cDNA for this gene was isolated from barley after inoculation with the barley
powdery mildew fungus by Thordal-Christensen er a/. (1992). The entire cDNA was
cloned into a vector containing the GUS and the np/ll coding sequences. The
expression of prx8 was investigated with transgenic tobacco plants constitutively
expressing this gene. Characterisation of prx8 showed it encodes a peroxidase with a
pl of 8.5. It is extracellular and is present as both glycosylated and non-glycolsylated
proteins ( Kristensen et a/. 1997) Other prx genes have been cloned and characterised,
such as the barley prx7. Its mRNA has been shown to accumulate after inoculation
with barley pathogens (Thordal-Christensen ef al. 1992) and analyses suggested that
Prx7 was a vacuolar peroxidase ( Kristensen er al. 1999),

Peroxidases are believed to be involved in the lignification process (Méder and
Amberg-Fisher 1982, Lagrimini er af. 1997, Christensen e/ af. 1998, Ostergaard er al.
2000). More recently, Burbridge (in preparation) observed an increase in lignin levels
from tobacco plants overexpressing the prx8 gene. In the present investigation, this
same gene was used in further transformations of tobacco plants, as well as apple
plants in order to study the effect of the increased peroxidase on lignification, and also

its influence in the responses to abiotic stresses.

The cDNA of the prx8 gene has been cloned into two binary vectors: under the
control of the constitutive promoter CaMV-35S in the pCAMBIA 3201 vector, and
under the light-activated cab promoter in the pCAS 7/19 vector.

The prx8 gene was introduced into the apple nuclear genome by the Agrobacterium
method as described in Section 2.3.1. The transformation frequency obtained with this
method, calculated as the percentage of leaf discs yvielding transformants, was 1.7 %.

This frequency is comparable with that obtained in other transformation studies with
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apple. For example, Yao ef al. (1995) obtained frequencies between 0.4 an 2.8%, De
Bondt ef al. (1996) obtained frequencies of up to 2.3% and James er al. (1989)

produced frequencies of 1%.

Transgenic tobacco plants were also obtained with these vectors, using the biolistic
approach and Agrobacterium-mediated transformation. When molecular analyses
were performed, prx8 was positively amplified by PCR, its integration verified by
Southern blot analysis and its transcription corroborated by RT-PCR., In the previous
work by Burbridge (in preparation) prx8 was inserted into the tobacco genome via
Agrobacterium-mediated transformation. 30% of the putative transformants obtained
were positive for the transgene. With the biolistic approach used in the present work,
50% of the putative transformants tested were positive for the prx§ gene. The 4-B
line, obtained using Agrobacterium, showed a double insertion of prx§ in a Southern
blot analysts. Using the biolistic approach, we have obtained two lines with double
inserts, two lines with three inserts and one of the line with four inserts of the
transgene. The particle bombardment method has proven to be very useful in plant
transformation, overcoming incompatibilities between bacteria and plant which can
prove a barrier to Agrobacterium-mediated transformation (Taylor and Fauquet 2002).
This method can present some drawbacks regarding the integration of the DNA; in
fact, the plasmid DNA can undergo recombination not only with the host genome, but
with itself, with the consequent result of integration of chains of plasmids. This can
produce various results, from single inserts to a high copy number of integration

(Finer ef al. 1999).

In order to ensure that prx8 expression was altering the levels of peroxidases in the
plant, peroxidase activity was measured in all transformed plants and compared to
wild type tobacco or apple plants.

Several studies have focused on the transformation of plants with peroxidase genes
and the overexpression of these enzymes (Pellegrineschi ef a/. 1995, Lagramini ef al.
1997, Kis er al 2004). In the present work, apple plants transformed via
Agrobacterium-mediated transformations with the prx8 3201 vector showed levels of
up to 4-fold increase in total peroxidase activity when compared to the wild type. The
transgenic fobacco plants obtained by biolistics with the pCAS7/19-prx8 vector

presented peroxidase activity levels between 2 and 4.5 times higher than the wild type
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tobacco plants. There is not an obvious link between the copy number and the levels
of peroxidase activity in these lines. Burbridge (in preparation) showed increases of 2
and 4-fold from transgenic tobacco plants overexpressing the prx8 gene, while
comparing them to the wild type tobacco plants. Studies concerning other peroxidases
have also shown increase of their levels in transgenic plants. Pellegrinischi er al,
(1995) transformed Nicotiana tabacum plants with a vector containing the horseradish
peroxidase (HRP) driven by a constitutive promoter (CaMV 358S), a light inducible
promoter (RUBISCO-SSU and the soybean heat shock promoter. They observed
increases of up to 2.5-fold in the transgenic plants, but did not obtain any significant
difference between the three promoters. In another example, Lagrimini et a/. (1997)
worked with transgenic Nicotiana sylvestris overexpressing a tobacco anionic
peroxidase driven by the 35S promoter. They obtained plants with a 5-fold higher
total peroxidasc activity. In a recent study, Kis er al. (2004) obtained tobacco
transgenic lines overexpressing a native horseradish peroxidase, driven by a
constitutive promoter and a light inducible promoter. Analyses have shown all the
transformed plants present increases of up to 10-fold when compared to the wild type
plants. The increases observed in the present study are modest compared to some of
the above. This could be due to differences in vector design, or regulatory or targeting
elements. For example, prx8 is targeted to the apoplast via the secretory pathway
(Kristensen er al1997), but the transit sequences concerned might influence
transcription rate, or transcript or protein stability. On the other hand, the N-terminal
extension of the horseradish peroxidase C isozyme appears to stabilise either the
transcript level or the recombinant protein, leading to enhanced accurnulation in the
cytosol, Unfortunately there are no comparative data on the levels of transcript in the
different heterologous expression systems mentioned above. Despite the fact that the
increases in peroxidase activity in the present study fall short of levels previously
achieved for the cytosolic accumulation of horseradish peroxidase in tobacco, they are
still of sufficient magnitude to be of value for investigations on the role of the enzyme
in development and stress responses, particularly since the additional activity is

located in the cell wall.

The tobacco plants transformed by biolistics with the pCAS7/19-prx8 vector were
analysed for their levels of peroxidases in the roots. The chlorophyll a/b binding

promoter (cab) is activated by light (Bischoff er a/. 1997, Luan and Bogorad 1992,
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Aida et al. 2004) and as predicted there was no significant difference between the
peroxidase levels of wild type roots and those of the transgenic line, despite the
elevated levels in the leaves of the latter. In fact, GG3, GGS, GG6 and GG7 are not
significantly different from the wild type at 99% confidence level (df=4; tggi= 3.8;
tas=1.4;, ta6e=0.3; tggr=2.5). Only wild type roots show increased levels of

peroxidase when compared to the GG16 roots (df=4, t=6.7, p=0.001).

Millar and Kay (1996) utilising the luciferase reporter system in transgenic
Arabidopsis plants showed that a light pulse induced the expression of the reporter
gene, driven by the Cab promoter, from dark-grown scedlings. Similarly, Bischoff ef
al. (1997) studied the pattemns of tuciferase expression under the control of the cab
promoter in transgenic tobacco plants and observed an important difference between
the luminescence obtained from plants grown in darkness and those exposed to light
treatments. But they also determined that not alf cells were competent to induce cab
gene expression in the tobacco seedlings. In fact, in 6- or 7-day-old seedlings, only 5

segments of the irradiated cotyledon triggered a response.

This spatial pattern of the expression driven by the cab promoter is probably tissue
specific as well as light dependent, which would explain the tissue specific effect on

transgene expression observed in the present study.

4.2 Influence of peroxidase over-expression on lignification and xylogenesis

Sections of branches from apple plants overexpressing the prx8 gene as well as wild
type apple plants were stained for lignin with phloroglucinol. Phloroglucinol stains
lignified cells upon reaction with hydrocinnamaldehyde groups present in the
polyimer. Stains of transgenic apple plants show a difference in coloration when
compared to the wild type apple plants, in particular Ap04 and Ap0O8 which present a
more intense red coloration. This could represent an increase in guaiacyl levels,
indicating an altcration in lignin composition. These sections were used to study the
number of vessels in the xylem. The transgenic plants exhibited a higher number of

xylem vessels and/or fibres in these sections.
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Lignin is particularly associated with xylem, where it is a major component of the
secondary cell walls of cell types such as vessel elements, tracheids and fibres
(Boudet 1998). Peroxidases have a pivotal role in this lignification process. They are
capable of increasing the levels of H,O, by a series of reactions in which substrates
such as NADH and IAA are oxidized (Blokhina er al. 2003) and then act as
scavengers of HyO; by behaving as a typical enzyme (Siegel 1993). They also
catalyse the polymerisation of the phenyl propanoid precursors of lignin (Méder and
Amberg-Fisher 1982, Dean, 2001), the final step in lignin synthesis. By stimulating
the lignification process, the increase in peroxidase levels found in the present study
could influence cytodifferentiation, leading to the observed increase in xylem vessels.
Previous investigations have shown a correlation between peroxidase levels and the
lignin content. For example, a correlation between the expression of a tomato
peroxidase in tobacco plants and the synthesis of lignin was studied (Quiroga et al.
2000}. Expression of this peroxidase was found mainly in cells undergoing active
lignification. Burbridge (in preparation) observed a similar pattern with the tobacco
plants overexpressing the prx8 gene, with higher numbers of xylem vessels linked to

higher levels of peroxidase activity and total lignin.

Both the above investigations were carried out with tobacco. To our knowledge the
present results are the first to demonstrate a relationship between recombinant
peroxidase production and xylem formation in a woody species. It is noteworthy that
the source of the gene was a cereal (barley), and totally unrelated to apple. It was by
no means certain that the barley peroxidase would have such a profound effect across
such a great phylogenctic distance. Plant species tend to have numerous peroxidase
genes (Welinder, 1992) leading to the assumption that some of the iso-enzymes must
have specific roles in the plant. However, Prx8 is a peroxidase closely associated with
pathogenesis induced “oxidative bursi”, a hypersensitive response which includes
lignification as well as programmed cell death (Thordal-Christensen ef al. 1997). It
has also been demonstrated to efficiently oxidise a lignin precursor analogue
(Burbridge, in preparation) suggesting it has a suitable substrate specificity to induce

our observed responsc in apple.

The fact that recombinant peroxidase can influence lignification in a woody species is

of considerable commercial interest, for possible extension to forestry crops where
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there has been a significant research focus on modifying wood quality (Whetten and
Sederoff 1991, Giri er al. 2004). Most of this has centred on steps in the
phenylpropanoid pathway, through which the lignin monomers are generated from
aromatic amino acids. Several works have focused on the last two enzymes of the
lignin pathway (cinnamoyl CoA reductase, CCR and cinnamyl alcohol
dehydrogenase, CAD). Halpin et a/. (1994) showed that transformation of poplar with
an antisense CAD gene resulted in a shift in the lignin composition towards higher
levels of cinnamaldehyde units and lower coniferyl alcohol units, but the levels of
lignin remained unchanged. This lignin was easily extractable under less harsh
conditions. Piquemal ef al. (1998) showed that down regulation of the CCR gene
resulted in a reduction in lignin content in transgenic tobacco. The current results
suggest that the cross-linking step in lignin production, catalysed by peroxidase, could
be an alternative target. A modification in peroxidase levels could in fact result in
modification of lignin content, but these results seem to indicate an increase in the
levels. However, this apparent increase might represent a more readily extractable
portion, rather than the total lignin, and could therefore be a beneficial trait. Blee et al.
(2003) used a lignin degrading peroxidase to transform tobacco, resulting reduced
ligning levels. Tt would be of economic and environmental importance to reduce
lignin content, in order to reduce the energy demand and chemical pollution related to
the paper manufacturing industry (Herschback and Kopriva 2002, Pilate et al. 2002).
Down regulation of cell wall peroxidases in woody plants, by anti-sense or RNAI, is a

strategy which would certainly be worth exploring.

4.3 Influence of peroxidase over-expression on plant growth:

Apple plants overexpressing the prx8 gene showed a faster rate of growth when
compared to the wild type plants. In this study, transgenic lines are between 30% and
50% taller than the wild type plants. Also, the number of nodes increased in the

transgenic lines, with 30- 50% more than in the wild type trees.

The influence of peroxidase activity on tree growth rate has been studied previously.
Kawaoka et af. (2003) analysed transgenic aspen trees overexpressing a horseradish

peroxidase (prxCla) and demonstrated that this increased activity stimulated the

106



growth of plants. Their transgenic lines’ stems were 25% taller than those from the
wild type aspen trees. The authors suggest that the product from the prxCla gene has
an activity toward ascorbate and that it might act as an ascorbate oxidiser in the
process of cell elongation. In fact, ascorbate is not only involved in the defence
mechanisms in plants but also in the regulation of cell elongation (Gonzélez-Reyes et
al. 1994). Tt seems likely there is a link between levels of ascorbate and its oxidized
form (dehydroascorbate), and the enzymes related to them, and the process of cell
elongation (Cordoba-Pedregosa ef al 1996, Cordoba-Pedregosa er al 2003).
However, investigations of ascorbate peroxidase from rice, suggest that this enzyme
does not have a significant causal role in growth and development, but that its
stimulation results as a defence mechanism to the oxidative stress caused by the H,O;
generated durtng plant development (Agrawal er a/. 2003). Another hypothesis, which
could be applied to the results here obtained, is the involvement of peroxidases in the
process of lignification (Whette ef «/. 1998). Changes in enzymes related to the
lignification biosynthesis can alter the phenotype of plants (Zhong et a/. 2000, Hu er
al. 1999). It 1s possible there 1s a link between the changes in the xylem pattern and
the enhancement of growth and a wider link with the increased of lignin content due
to the overexpression of peroxidase. It is nonetheless important to note that Kristensen
et al. (1997) observed the opposite effect on transgenic tobacco plants overexpressing
the pathogen-related peroxidase from barley, prx8. They indicated that the
constitutive expression of this gene and the subsequent increase in peroxidase activity
caused growth retardation in the tobacco plants. Tt is known that cell-wall peroxidases
are involved in the cross-linking of polymers, stiffening the cell walls during growth,
reducing the rate of elongation (Fry 1986). However, Kristensen et al. (1997) admit
that the relationship between peroxidase activity and reduced growth is only
hypothetical since the phenotype is only observed after a pathogen attack

Another obvious way in which plant architecture could be influenced by peroxidase
levels is through this enzymes established effect on indole acetic acid (IAA). This
hormone is associated with cell elongation, and is known to be oxidised by
peroxidases (Normanly 1997). Elevated peroxidase could lower TAA levels which
would influence plant growth. Although growth retardation would seem the more
likely outcome, this need not be the case if the endogenous auxin levels are normally

supraoptimal in the stem.
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However, the present results, in common with those from Kawaoka ef al. (2003) show
an increase of both height and number of nodes, without a great change in internode
lengths. These results suggest an overall acceleration of normal balanced growth, of
both height and branching, rather than and effect on cell elongation. An auxin effect
would more likely lead to alterations in cell elongation, and therefore internode
length. Longitudinal sections should be investigated in order to study the real effect of

an increase of peroxidase activity levels on the cell elongation process.

4.4 Influence of peroxidase over-expression in response to environmental stresses

4.4.1 High temperature

Heat stress in plant can be responsible for the production of Reactive Oxygen Species
(ROS) and the subsequent injuries due to the oxidative stress (Shi et a/. 2001). Heat
stress can affect plant emergence and damage the components of photosynthesis (Hall
2001). Transgenic tobacco and apple plants overexpressing the cell wall peroxidase
from barley showed an increased resistance to the heat stress. Cellular membranes
presented a higher tolerance to the effects of the high temperature, indicating less
membrane damage when compared to the wild type plants. Studies have shown that
an increase in heat stress enhances the activity of enzymes capable of regulating the
levels of ROS, such as peroxidases (Chaitanya es ¢l. 2002). In experiments with
strawberry plants Gulen and Eris (2004) observed that an increase in temperature

caused increases in both ion leakage from leaf cells and total peroxidase activity.

A correlation between heat stress and the activation of antioxidant systems was
described in bentgrass. (Larkindale and Huang 2004). Also, Edreva er al. (1998)
described an increase in total peroxidase activity in bean plants submitted to heat
stress. It 1s possible that the higher levels of peroxidase in transgenic plants is
influencing the recovery from the damage caused by the heat treatments High
temperature increases the levels of H20, and other ROS, and the cell wall peroxidase
is capable of scavenging the H,O, (Blokhina er a/ 2003), thus preventing and/or

reducing the cellular damage.
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The present investigation was not restricted to leafl discs, but was extended to whole
plants in both species. In this case the differing responses were particularly dramatic.
The transgenic plants overexpressing the prx8 gene exhibited no visible adverse
effects in response to the heat treatments, while the wild type plants showed no
tolerance to the stress. A similar experiment analysing the effects of heat stress and
ROS scavenging enzymes in transgenic Arabidopsis overexpressing a peroxisomal
ascorbate peroxidase from barley (Shi ef al., 2001) showed an increased tolerance to
the heat stress. The authors postulated that the increase in this enzyme levels played

an important role in the scavenging of H,O,.

Investigations with callus cultures can be useful for evaluating the extent to which a
whole plant physiological response is dependent on tissue or organ organisation, or is
a purely cellular process. In the present study, the protective effect of peroxidase in
tobacco plants could be mimicked in callus cultures, suggesting it has a strong cellular
basis. Since the callus cultures are non-photosynthetic, this finding also suggests that
membranes other than the photosynthetic membranes of chloroplasts are susceptible

to heat induced ROS, and capable of protection by ROS scavenging enzymes.

4.4.2 Chilling stress

Experiments involving chilling temperatures with tobacco plants showed an increased
tolerance in plants overexpressing the prx8 gene when compared to the results from
the wild type plants. McKersie ef al. (1999) hypothesized a relationship between an
increased tolerance to oxidative stress and the increased rate of survival to winter
temperatures. In their experiments they obtained alfalfa plants overexpressing a
MnSOD ¢DNA, which exhibited a consequent increase in winter survival. They also
utilised the electrolyte leakage method and observed a small improvement to freezing

tolerance of membranes in the transgenic alfalfa plants.

The increase of ROS scavenging enzymes levels in response to the freezing or
chilling has been analysed in several laboratories (Briggemann et a/ 1999, Lee and

Lee 2000,). Levels of SOD and ascorbate peroxidase activity were observed to

109



increase in fomato cultivars after chilling, but particularly in those with a lower level
of chilling tolerance (Briiggemann er a/ 1999). Also, Keshavkant and Naithani (2001)
studied cold stress in chilling sensitive sal (Shorea robusta) seedlings and observed an

increase in ROS.

Active oxygen species such as superoxide, hydroxyl radicals and hydrogen peroxide
are believed to be responsible for the oxidative stress caused by the low temperatures
(Wise and Naylor 1987). Lee and Lee (2000) for example observed a higher level of
peroxidase activity in chilling stressed-cucumber plants, in parallel to an increase in

the levels of H,Os.

The transgenic lines analysed for cold stress in this work presented a higher tolerance
and this might be due to the constitutive higher levels of peroxidase, enzyme that

would be able to detoxify the cells from the ROS created by the chilling stress.

4.4.3 Salinity

Sced germination from a transgenic tobacco line expressing the barley peroxidase
showed a higher tolerance to salinity than that of wild type seeds, when high levels of

salts are present in the germination media.

Salinity can affect the plant by decreasing the amount of water that can be absorbed
(osmotic effect) or by altering the cells equilibrium with an excess of ions (Munns
2002). Plants cope with these phenomena by either minimizing the ions
disequhibrium and its negative consequences or by reducing the osmotic stress with
cellular adjustments (Yokoi et al. 2002). In order to differentiate between an increase
tolerance to the high salinity and a tolerance to the osmotic stress, seeds were exposed
to an osmotic stress (KCl or mannitol). Under the effect of both osmotica,
germination of transgenic seeds was higher than wild type. Yeo et al. (1991) also
studied the effect of these two osmotica and concluded they could have similar effects
as NaCl, which might indicate the reduced germination is not only due to the presence

of Na and CI in the medium. Also, Amaya ef al. (1999) observed similar effects of
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KCl and mannitol on the germination rate of seeds from transgenic plants
overexpressing a peroxidase.

We have found a stronger effect from high concentrations of KCI or mannitol than
from the high salinity. The negative effect of mannitol on the germination rates was
higher than the high concentration of KCI which is not only an osmoticum but also a
source of ion stress. This might indicate an improved tolerance to the osmotic

pressure rather than the excess of ions,

Supporting the cellular changes as the basis for salt tolerance, Amaya et al. (1999)
transformed tobacco plants with a cell wall peroxidase from tomato and observed an
increase in germination rates in high salinity medium. In their experiments, not only
did transgenic seeds germinated faster, but they were also shown to absorb more
water than the wild type seeds. This increase of water uptake would be responsible for
the higher germination rates. They hypothesised a change in the cell wall structure of
the transgenic seeds and thus a change in the pore size that would increase the amount
of water refained and available for germination. It has been shown that high salinity
increases the polymerisation of monolignols in roots (Cruz et al. 1992) and Quiroga et
al. (2000) showed how NaCl treatments not only increased the levels of peroxidases
but also affected the pattern of peroxidase gene expression, which could decrease

water conductance by increasing lignification.

The levels of ROS-scavenging enzymes can also be linked to the tolerance to salinity.
Borsant ef a/. (2001) studied oxidative stress caused by salinity and osmotic pressure
in Arabidopsis seedlings. They observed that a chemically induced decrease in ROS
levels also reduced the salinity/osmotic stress, confiring the effect of salt ions in the
increase in ROS, and their role in damaging the plant cell. Also, Savouré ef al. (1999)
suggest a delicate regulation of antioxidants when plants are under salt stress. They
observed increases in glutathione peroxidase and catalase, related to the burst of ROS
induced by the presence of NaCl in the medium. Peroxidase activity has also been
known to increase its levels in the presence of high salinity. Pujari and Chanda (2002)
observed an important increase of this enzyme in vigna seedlings under salt stress.
The enzyme activity is believed to increase as a protective response to this abiotic

stress.
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In the present study the transgenic tobacco overexpressing the barley cell wall
peroxidase might present an enhanced tolerance to the salt and osmotic stress by
acting in both the defence mechanism against the oxidative species, and by altering

the structure of the cell wall.

4.4.4 Metal ion stress

An excess of metal ions, such as zinc and manganese, can be toxic for plant cells
(Zhang et al. 1998). The same experimental approach, ie seed germination, as that
used to explore salinity tolerance, was also employed to investigate the effect of
peroxidase over-production on metal tolerance. Seeds from transgenic tobacco plants
overexpressing the cell wall peroxidase prx8 showed germination rates up to four
times higher than those from the wild type, when germinated on medium containing

ZnCl, and MnCl,

As with other abiotic stresses, it is suggested that excess manganese can induce the
production of oxygen free radicals, and consequent causes oxidative stress (Gonzales
et al. 1998). These authors found in Mn-stressed bean leaves an increased level of
superoxide dismutase (SOD), with the concommitent increased production of H>Os.
Also, Lidon (2000) found a link between manganese and the production of SOD.
They treated rice with toxic amounts of manganese and observed an increase in the
production of superoxide and hydroxyl radicals. Plant peroxidases catalyse the
reduction of H,0, (Passardi ef a/. 2004) and could therefore scavenge the excess of

H70; produced by the higher activity of SODs, associated with Mn-stress.

Fang and Kao (2000) however, showed that the induction of peroxidase was a direct
effect of the metal ions, and was not simply induced by the consequent elevation of
H,Os levels. It had previously been shown by Prassad ef al. (1998) that an excess of
zinc generates free radicals and this was linked to the production of peroxidases.
Fang and Kao (2000) however, trecated detached rice leaves with Paraquat (in order to
increase the production of H>O»), and with H,Os itself, but did not observe any effects

on peroxidase activity. They suggest that in the presence of zinc, there is a de novo
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peroxidase biosynthesis linked to the toxicity. Peroxidases would then be involved in

the detoxifying of the oxygen radicals.

It is important to remark that even though plant peroxidases can scavenge H>O; in
plants, they are not considered part of the normal battery of ROS-scavenging enzymes
in plants by some researchers. Mittler ef a/. (2004) describe how, in plants with
knockout or antisense catalase or ascorbate peroxidase genes, the levels of class 111
peroxidases is elevated, but the significance of this is still unknown. The function and
role of plant peroxidases in the detoxifying action against reactive oxygen species and
the consequent increase in tolerance to abiotic stresses needs to be further studied and

clarified.

4.5 Concluding remarks

The transgenic approach has been used for a number of years to obtain crops with
improved qualities. In a similar way, transgenic plants are very useful tools for
increasing our understanding of the plant physiology and the different responses to
environmental stresses. Peroxidases are not only involved in the reactions to stress but
in many other processes, including the lignin biosynthesis. This position makes this
enzyme an interesting target for the genetic modification of wood in trees.

We have observed how the insertion of a cell wall peroxidase from barley into two
species, Nicotiana tabacum, as the model plant, and Malus domestica, as a woody
spectes, has produced plants with increased levels of total peroxidase and subsequent
increased tolerance to several abiotic stresses. It has produced a change in the number
of xylem vessels, indicating a possible change in the lignin structure. It has also
provoked an acceleration of growth of the transgenic plants. We believe all these
observed phenomena can by linked by the known propensity for plant peroxidases to

be involved in both ROS scavenging processes and phenolic metabolism.

Further analyses are nceded to dissect in more detail the effects of the overexpression
of this peroxidase in the lignification process and other aspects of plant growth and
development, but we can conclude that its effects on the physiological responses are

remarkable. The results here contribute to a better understanding of the biochemical
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and physiological role of peroxidases in plants, but could also be of economical
interest in the production of crops with improved agronomical traits, such as increased
resistance to harsh environmental conditions, and also in the paper industry, where a

change in lignin composition could be beneficial.
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