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Abstract 

Magnetorheological Elastomers (MREs) are “smart” materials whose physical properties are 

altered by the application of magnetic fields. In previous studies the properties of MREs have 

been evaluated under a variety of conditions, however little attention has been paid to the 

recording and reporting of the magnetic fields used in these tests [1]. Currently there is no 

standard accepted method for specifying the magnetic field applied during MRE testing. This 

study presents a detailed map of a magnetic field applied during MRE tests as well as 

providing the first comparative results for uniaxial and biaxial testing under high strain 

fatigue test conditions. Both uniaxial tension tests and equi-biaxial bubble inflation tests were 

performed on isotropic natural rubber MREs using the same magnetic fields having magnetic 

flux densities up to 206mT. The samples were cycled between pre-set strain limits. The 

magnetic field was switched on for a number of consecutive cycles and off for the same 

number of following cycles. The resultant change in stress due to the application and removal 

of the magnetic field was recorded and results are presented.  
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1. Introduction 

Magnetorheological Elastomers (MREs) are classified as smart materials that undergo a 

change in their physical properties which is observed as an increase in modulus when a 

magnetic field is applied to an MRE [2]. The increase in the modulus is caused by the 

ferromagnetic particles which are added to the elastomer during the curing process, tending to 

align with the applied magnetic field. The alignment occurs because the applied field results 

in dipole-dipole interactions between the particles which move to screen each other from the 

field and adopt a minimum energy configuration [3].  

All MREs consist of two key components, the elastomeric matrix and ferromagnetic particles. 

MREs can also be classified into two broad groups; isotropic and anisotropic. Isotropic MREs 

contain an almost homogeneous distribution of magnetic particles whereas anisotropic MREs 

contain aligned particle chains. These chains are formed by the application of a magnetic 

field during the curing process [4]. Once the matrix has been cured, the particle mobility is 

reduced and the aligned chains remain in position. MREs with aligned particles normally 

exhibit a greater magnetorheological effect than isotropic MREs when the magnetic field is 

applied parallel to the direction of the particle chains [4].  

 

To date, MRE testing has predominantly been carried out on uniaxially loaded samples [5]. 

However the data provided on the magnetic fields prevents an accurate replication of many 
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tests as the magnetic field is stated as uniform in both flux density and direction over the 

entire sample volume. The greater the distance between the magnetic poles, the less accurate 

this statement becomes. [1, 5, 6]. 

 

The focus of this research is twofold. Firstly to provide an accurate representation of a 

magnetic field applied to MRE samples during both uniaxial tensile and biaxial bubble 

inflation fatigue tests and secondly, to provide the first comparative results between uniaxial 

and biaxial cyclic loading testing for an MRE exposed to the same magnetic field under both 

test modes. 

 

2. Apparatus and Materials  

 

2.1 Magnetorheological Elastomers 

 

The MRE samples used in all tests reported in this paper consist of isotropic carbon black 

filled 1.65% (volume per volume) vulcanised natural rubber with 18.3% (volume per volume) 

iron particles Previous studies [2-4, 7-9] have focused on soft elastomer matrix (silicone or 

urethane) based MREs as these elastomers have a greater particle mobility and hence undergo 

a greater increase in modulus when a magnetic field is applied. Other studies [10-12] have 

focused on natural rubber based MREs as their superior physical (modulus) and fatigue 

properties offer potential applications such as Adaptive Tuned Vibration Absorbers (ATVAs) 

[11]. 

 

As the primary goal of this study is to specify a magnetic field and evaluate its effect on two 

separate test methods, variations in test results due to sample manufacture or orientation 

(particle chains in anisotropic samples) were minimised by use of isotropic samples produced 

by a replicable commercial production method. 

The samples used in the uniaxial tensile strength tests were 70mm x 20mm x 1mm strips with 

the direction of extension being in the direction of the 70mm length. For the biaxial bubble 

inflation tests, discs of 50mm diameter and 1mm thickness were used.   

2.2 Electromagnetic Array 

 

All magnetic fields applied in this study to both the uniaxial and biaxial tests were generated 

by the same electromagnetic array. A  prototype of this array was described in a previous 

study by the authors [1] but has since undergone further modifications to increase the flux 

density.  An FEA model of this modified array is shown in figure 1. Electromagnets have a 

number of advantages and disadvantages when compared with permanent magnets. The main 

advantage offered by permanent magnets is that they do not require a constant input of power 

to maintain the magnetic field [13].This is offset by the fact the an electromagnetic array 

allows for the field to be turned on and off during a test so that data can be collected with and 

without the magnetic field applied for the same sample during a single test. The same tests 

can be repeated using fields of different flux density by altering the current supplied to the 

coils. 

 

The magnetic array discussed here uses low carbon steel rods of 50mm for the magnetic core 

and magnetic circuit. This arrangement is shown in the FEA model (FEMM4.2 modelling 

software [14])  in figure 1 and 3D schematic in figure 2.  

 



 

Fig 1. 2D FEA model of the array used during testing  

 

 

Fig 2. 3D schematic showing position of electromagnets 

The array consists of four 1500 turn electromagnets with current flowing in one direction for 

the two central coils and in the opposite direction for the two side coils to give the same north 

and south pole arraignment as the open access Halbach array used in NMR imaging by Hills 

[15]. The magnetic circuit is a constant 50mm diameter for the entire circuit length to 

maximise the flux density of the field which can be applied to the samples. The updated array 

incorporates the same cooling system power supply and side coils of the prototype [1].   

3 Testing methods 

3.1 Uniaxial tensile fatigue tests 

Uniaxial tensile fatigue tests were performed on 70mm x 20mm x 1mm isotropic natural 

rubber MREs with the strain applied along the 70mm length of the sample (ie zero strain 

l0=70mm) and the cross sectional area of the sample being 20mm2. These tests were 

conducted on a Zwick uniaxial tensile test machine. 



All tests carried out were constant strain amplitude tests. The stress was calculated as true 

stress from the load cell output. =  where σtrue is the true (Cauchy) stress, F is the force 

on the load cell, A is the initial cross sectional area of the sample, and λ is the stretch ratio 

(strain+1). All modulus values reported in this study are for  where ε is the 

strain. 

The magnetic fields were field was applied perpendicular to the strain direction for all 

uniaxial tests. Each test consisted of 500 cycles at 1Hz with the field switched off for the first 

50 cycles and being switched on at the 50th cycle for the next 50 cycles before being switched 

off at the 100th cycle. This off/on switching of the magnetic field continued until the test 

ended with the field in the on position for cycles 450 to 500. 

3.2 Equi-biaxial bubble inflation tests. 

The equi-biaxial tests were carried out on the  DYNAMET equibiaxial bubble inflation test 

machine developed in the Dublin Institute of Technology by Murphy et al [16, 17] and 

further developed by Johnson et al [18]. Both stress (using the pressure, radius of curvature 

and strain) and strain are recorded directly using a vision system. Modulus is calculated in the 

same manner as in the uniaxial tests where . 

The DYNAMET’s vision system comprises two CMOS (complementary metal-oxide 

semiconductor) cameras which recorded values in one axis of strain only. The magnetic field 

runs parallel to the applied strain in the axis for which the data is being recorded for all 

biaxial tests. Each test consisted of 150 cycles 0.2Hz with the field initially in the off position 

for the first 90 cycles and being switched on at the 90th cycle. The field is alternately turned 

on and off for all subsequent sets of 20 cycles with the test ending with the field in the on 

position for cycles 130 to 150. The bubble inflation tests were conducted at a lower frequency 

than the uniaxial tests to increase the number of data points per cycle as they are obtained 

from the real time vision control system. 

 

3.3 Characterization of the magnetic field 

Before any tests were carried out, the magnetic field was mapped using a Lake Shore model 

460 3-axis Gaussmeter and 3 axis Hall probe with no sample present. The Hall probe is 

capable of measuring the field in the x y and z axes to an accuracy of ±0.1mT. It consisted of 

three orthogonally mounted Hall generators in a probe structure with a separate output for 

each axis on the Gaussmeter which allows field direction to be calculated. The centre point of 

the air gap in the electromagnetic array was designated as the datum point (0,0,0). The array 

and Hall probe were mounted on a xyz translation stage (milling machine) and the position of 

the probe could be measured to an accuracy of ±0.01mm in each axis. Figure 3 shows the 

array on the test bed during mapping of the flux density. 



 

Fig 3. 3 axis experimental set up to  map magnetic field 

The magnetic flux density of the field was mapped by moving the hall probe 5mm in one axis 

to a precision of ± 0.05mm and recording the values on the Gaussmeter. The field was 

mapped in the x y plane with a fixed z value and when this map was completed the probe was 

moved in the z axis and another x y plane map was produced. The field was mapped for +/-

25mm in the x and y axis and +/-20mm in the z axis to provide a measure of the field over the 

sample volume without the presence of a magnetic sample. All flux density values quoted are 

for the datum point (0,0,0) with no sample present unless otherwise stated, as the presence of 

a sample will alter the magnetic flux density. 

 

4 Results 

4.1 Magnetic field mapping results 

A previous study on a prototype version of the electromagnetic array used in this study [1] 

showed that there was a substantial difference between the  field calculated by the FEA 

software and the actual values recorded by the Gaussmeter in the air gap between the pole 

pieces of the electromagnetic array. Despite this difference in the flux density values, the 2D 

FEA modelling provided useful information in field mapping and design for saturation 

current values, field line direction and the profile of the flux density uniformity. 

The results presented in figure 4 show the recorded flux density, at the centre point of the 

array for a range of currents without the presence of a sample. This shows the range of flux 

densities which can be applied to a sample during both uniaxial and biaxial testing up to a 

maximum flux density of 206mT. It is also clear from figure 3 that the cores of the 

electromagnets are approaching saturation illustrated by the drop in the rate of increase of 

flux density as the current is increased.  



 

Fig 4 Flux Density at centre of air gap v Current per Coil 

The graph in figure 5 shows the effect that the presence of an MRE sample can have on the 

overall flux density. To record this effect a sample which was used for a bubble inflation test 

was punctured at its centre and the sample was placed over the Hall probe and the same tests 

were repeated. This shows an increase of 29mT, from 206 mT to 235mT, in the flux density 

for the maximum flux density value at the centre of the sample.  

 

Fig 5 Flux Density at centre of air gap v Current per Coil with MRE sample present 

As different samples contain varying amounts and distributions of iron particles, they will 

have a different effect on the magnetic field; therefore the only field which can be stated as 

the same for each test is that which is recorded without the presence of the sample. From the 

data presented in figures 4 and 5, the relative permeability (µr) of the MRE sample can be 

calculated by dividing the flux density recorded with the sample present by the flux density 

without the sample. This results in a µr value of 1.14±0.03 for flux densities without the 

sample above 130mT. For flux densities below this value the relative permeability is lower at 

1.02, 1.06, and 1.11, for the 1, 2, and 3 amps per coil flux density values shown in figure 3. 

To determine the uniformity of the magnetic field, the flux density was recorded for the array 

in five xy planes with differing values of z. The results are shown in figures 6. With this data 

in conjunction with the sample position it is possible calculate the flux density range at the 

point which the MRE experiences maximum strain. This information is presented in table 1 

for the z axis and table 2 for the (x,y) planes. All the graphs in figure 6 are recorded at a 

current of 7amps per coil in the array 
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Fig 6 xy plane plots of flux density at different z values    

   Table 1 uniformity of flux in z axis 

Z value in mm relative to 

centre 

Flux Density in mT 

20 137.1 

10 155.3 

0 161.3 

-10 156.6 

-20 140.0 

 

The data in table 1 shows a measure of the flux density of the centre points (x,y) = (0,0) with 

differing values of z taken from the graphs presented in figure 5. This shows how the applied 

flux density varies along a 40mm length of a uniaxial tensile test sample with a difference in 



flux density of 15% ( ) from the centre field value to its lowest point at a z 

displacement of 20mm  

The data in table 2 shows a measure of the flux density of the central z = 0 plane from the 

graphs presented in figure 5. This shows the change in the flux density in the xy planes with a 

difference of +9.5% and -4.8% from the centre field value at its maximum and minimum 

points in the 400mm2 area. This illustrates the non-symmetric saddle shaped plot of the flux 

density profile shown in figure 5. Therefore any flux value stated in this report has a 

maximum error of +9.5% and -4.8% on the stated figure, or a 14.3% change in the flux 

density from max to min over this area. The field direction over this area was calculated by 

comparing the flux density in the x axis Bx with the total flux density Bt at the each point. 

These agreed to within 0.1mT for all points in the two tables showing the field has a uniform 

direction in the x axis for the region of interest for all tests. The central area of these planes is 

the region in which the vision system records its data for bubble inflation tests which for a 

stretch ratio of 1.4 (strain 0.4) would cover a maximum area of 70mm2 centred on the pole of 

an inflated bubble sample. This gives a maximum variation in flux density over the region 

measured by the vision system of 5.0%. 

 

   Table 2 uniformity of flux in xy plane 

(x,y) value mm relative to 

centre 

Flux Density in mT 

(0,0) 161.3 

(0,10) 159.5 

(0,-10) 153.5 

(10,0) 176.6 

(10,10) 172.7 

(10,-10) 173.8 

(-10,0) 167 

(-10,10) 161.5 

(-10,-10) 163.8 

 

These results show that there is a variation of magnetic flux density being applied throughout 

the test sample volume. However, this is a more accurate representation of the actual flux 

density than that usually reported ie. a single value of flux density at a point. The deviation 

reported here will always be a characteristic of magnetic fields in air due to the 1/r2 

relationship [19]. 

4.2 Material Testing Results 

All tests on MREs reported in this study were carried out under conditions of cyclic loading 

between fixed strain limits (ΔL). These tests were chosen over load control tests as the 



application of the magnetic field causes an increase in the modulus of the MRE and such a 

change is easily detectable on a load cell for uniaxial tests and on the calculated stress 

measurements for biaxial tests. The MR properties of the material were evaluated by varying 

the applied magnetic flux density while maintaining the same strain control limits for the test 

samples, during both uniaxial and biaxial tensile fatigue tests. 

Initial uniaxial tests were carried out at low strain amplitude values to evaluate if the test 

procedures were sufficiently sensitive to detect the MR effect as the effect is greatest with 

low strain cycling (particles closer together for screening effects) and maximum flux applied. 

These tests were carried out on uniaxial samples cycled between strain limits of 0.04 and 0.08 

at 1Hz. The modulus was calculated for each data point recorded in the cycle. No field was 

applied for cycles 10-60. The field was then applied for cycles 60-110 and alternated between 

off and on for every subsequent 50 cycles throughout the test. The graphs in figures 7-8 show 

how the MR effect is calculated and presented in different formats. Figure 6 shows the 

modulus of the sample plotted against the cycle number. The graph shows a stepped 

instantaneous increase in modulus when the field is applied which is reversed when the field 

is removed. For figure 7  only the final 200 cycles were taken as the early cycles show 

diminishing maximum stress values due to the Mullins effect [20]. Figure 7 shows the 

average modulus calculated from all points in a single cycle for each cycle (Blue line) and the 

average using all points in the 50 cycle blocks (red line). The error bars on the red line are 

calculated using the standard error formula and shows the error on the modulus (the modulus 

reported is the mean modulus value and the standard error calculates the statistical error on 

the mean). Standard stress strain graphs were also produced to show the MR effect and are 

shown in figures 8 10 12 and 14. Figure 8 represents the final 100 cycles from figure 7. This 

was calculated by taking the average stress in a fixed strain range for the points in the 50 

cycles with the field off (blue) and for the subsequent 50 cycles with the field on (red). The 

stepped increase in modulus, visible at the 360th cycle on the x axis, is from 1.325MPa to 

1.413MPa. This is an increase of approximately 6.5% in the average modulus of the 50 cycle 

block. This corresponds with the field being switched on at cycle 360. 

   

Fig 7 Average Modulus v Cycles uniaxial data flux density 206mT       Fig 8 Stress Strain uniaxial data flux density 206mT 



The tests were repeated with an applied flux density of 112mT and the results are shown in 

figures 9 and 10. While there is still a detectable increase at cycle 360 when the magnetic 

field is switched on from 1.242MPa to 1.268MPa which corresponds to an increase in 

modulus of 2.1%, it is less than the effect observed in figures 6 and 7. By comparing figures 

6 and 8 it is clear that the MR effect depends on the magnitude of the applied flux density as 

would be expected.  

 

Fig 9 Average Modulus v Cycles uniaxial data flux density 112mT    Fig 10 Stress Strain uniaxial data flux density 112mT 

 

Samples were also tested under biaxial bubble inflation conditions between strain values of 

0.1 and 0.4 and cycled at 0.2Hz and the effect of varying the applied magnetic flux was 

investigated. Figure 11 shows modulus versus cycles for the final 80 cycles for a bubble 

inflation test with the magnetic field alternatively switching on and off for blocks of 20 

consecutive cycles. This shows the average modulus calculated from all points in a single 

cycle for each cycle (Blue line) and the average using all points in the 20 cycle blocks (red 

line). The error bars on the red line are calculated using the standard error formula and shows 

the statistical error on the modulus. Standard stress-strain graphs were also produced to show 

the MR effect. Figure 15 represents the final 40 cycles from figure 10 and was produced by 

taking the average stress in a fixed strain range for the points in a 20 cycle block with the 

field off (blue) and for a subsequent 20 cycle block with the field on (red). The increase in 

modulus is more obvious when displayed as an increase in the average modulus versus cycles 

rather than the standard stress strain graphs. 

 

Fig 11 Average Modulus v Cycles biaxial data flux density 198mT    Fig 12 Stress Strain biaxial data flux density 198mT 

 

The increase in the modulus recorded at cycle 90 is from 3.92MPa to 3.954MPa 

corresponding to an increase of 0.8% in the block average modulus. It is impossible to 

directly compare biaxial results to those from uniaxial test data as although the same 



strain/stretch ratio is applied, recorded stress and therefore the calculated modulus for the 

biaxial sample will be higher as it is stretched in two perpendicular directions simultaneously 

and has a greater effective strain than the equivalent uniaxial strain/stress ratio. Figures 13 

and 14 show similar tests to those in figures 11 and 12, repeated with an applied flux density 

of 112mT. The increase in the modulus of the sample at cycle 130 is from 3.764MPa to 

3.771MPa or approximately 0.13%. Again as was the case in uniaxial testing this shows the 

MR effect is proportional to the flux density applied to the sample. The drop recorded in the 

average modulus from cycles 90-110 compared with cycles 70-90 is due to continued stress 

softening of the sample. There is a change in the average modulus from cycles 70-90 and 

cycles 90-110 but it is statistically insignificant due to the overlap of the error bars, however 

an increase in modulus when the magnetic field is applied is visible at cycle 130. This 

reduction in the MR effect to statistically insignificant values corresponds with uniaxial 

results and is to be expected at reduced field strengths.   

 

Fig 13Average Modulus v Cycles biaxial data flux density 112mT        Fig 14 Stress Strain biaxial data flux density 112mT 

 

5 Conclusions 

5.1 Magnetic field reporting. 

The largest difficulty in replicating previously published MRE tests is the absence of a 

standard method of reporting the details of the magnetic field applied to the sample. A single 

flux density value is insufficient information to obtain a detailed understanding of the applied 

magnetic field and allow for an accurate replication of the test conditions. Therefore it is 

necessary for an agreed standard method for describing the magnetic field applied to any 

testing of an MRE. The following standard for detailing the applied magnetic field for an 

MRE test is proposed. 

1) A magnetic flux line diagram of the applied field (figure 1) is necessary as the 

direction of the applied flux with respect to force and particle chains (anisotropic 

MREs only) can have a different effect on the sample. [4] 

2) A detailed map of the flux density over the entire volume between the poles is 

required. As can be seen from the results in figure 6 and tables 1-2, small changes in 

the position of the probe result in a change in the measured flux density. The map 

should be of the actual measured field as current magnetic models may not be 

sufficiently accurate to model the magnetic flux in the air gap between the poles 

which is where the MRE sample will be placed. The flux density map also needs to be 

verified by physical measurement [1].  

3) The measurement of the flux density should be carried out without the presence of the 

sample as the results from figures 4 and 5 show the presence of the sample will alter 



the flux density values. The only field value which can be verified when applied to all 

samples is the field recorded without a sample present. 

4) When stating a flux density value, the location at which that value was recorded needs 

to be stated i.e. the centre point of the air gap and this should be the midpoint about 

which the bubble pole traverses in the case of a bubble inflation sample. 

 

5.2 Material testing results. 

From the results shown in figures 7-14 it is clear than an electromagnetic array can be 

designed and constructed which is suitable for the testing of MREs under high strain uniaxial 

loading conditions and the same array can also be used in biaxial bubble inflation tests of 

MREs. This array allows for the comparison of the results between the two different test 

methods as the only difference between them will be due to the actual test methods 

themselves. 

In both test methods a clear MR effect is visible for flux densities in the region of 200mT for 

high modulus (hard) natural rubber isotropic MREs. A reduced MR effect can be detected for 

fields above 100mT for both uniaxially and biaxially loaded samples. Therefore it can be 

concluded that as the MR effect can be detected in isotropic natural rubber MREs using this 

method,  softer isotropic and anisotropic MREs can also be evaluated as they all exhibit 

higher MR effects than for isotropic natural rubber based MREs [10]. However,  the increase 

in the modulus with the magnetic field applied is lower than the increases reported by 

McIntyre [21] [22]. This is due to the lower flux densities used in this study and the greater 

distance between the magnetic particles in the samples when the samples are undergoing high 

strain tensile loading compared with shear strain. 

Permanent rare earth magnet arrays can produce a higher flux density over the sample 

volume than iron core electromagnets and have zero power (energy cost) requirements in 

maintaining the magnetic field. However electromagnets offer the advantage that the 

magnetic field can be switched on and off during a test without any modification to the test 

set up or time delay such as that for the removal of the permanent magnets. This allows any 

variation due to sample manufacture or sample conditions to be eliminated as an effect on the 

change detected and a direct comparison between field on and off properties can be made. 

6 Further Work 

It is proposed that further studies will explore the effect of strain and strain amplitude on the 

MR effect for both cyclic uniaxial and biaxial conditions with an applied magnetic flux. 
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