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This paper presents validated real-time energy models for small-scale grid-connected PV-systems
suitable for domestic application. The models were used to predict real-time AC power output from a PV-
system in Dublin, Ireland using 30-min intervals of measured performance data between April 2009 and
March 2010. Statistical analysis of the predicted results and measured data highlight possible sources of
errors and the limitations and/or adequacy of existing models, to describe the temperature and efficiency
of PV-cells and consequently, the accuracy of power prediction models. PV-system AC output power
predictions using empirical models for PV-cell temperature and efficiency prediction showed lower
percentage mean absolute errors (PMAEs) of 7.9—11.7% while non-empirical models had errors of
10.0—12.4%. Cumulative errors for PV-system AC output power predictions were 1.3% for empirical
models and 3.3% for non-empirical models. The proposed models are suitable for predicting PV-system
AC output power at time intervals suitable for smart metering.

Microgeneration

© 2010 Published by Elsevier Ltd.

1. Introduction

A domestic grid-connected PV-system is a type of installation
where three major components are used: the PV-generator
(comprising a number of PV-modules connected in series or
parallel on a mounting structure); the inverter; DC and AC cabling
and a conventional power line [1,2]. Inverters play a key role in
energy efficiency and reliability since they operate the PV-array at
the Maximum Power Point (MPP). Moreover, inverters convert the
DC power generated by PV-modules into alternating current (AC) of
the desired voltage and frequency (e.g. 230 V/50 Hz). Installations
of this type do not include batteries [3,4].

Most existing generic models for assessing the energy output of
PV-systems are lumped since they determine average daily,
monthly or annual energy output. These models are adapted to
support policies such as net metering (applicable in Japan and some
States in America) where electricity is sold to the grid at the same
price at which it is bought. Lumped models are also useful in
countries where enhanced feed-in tariffs (high buy-back rates)
apply such as in Germany, Spain, Italy, Greece and France. Lumped
models are, however, not adapted to analyse the real-time or
dynamic performances of grid-connected PV-systems such as those
where support policies are based on paying for the excess (or spill)

* Corresponding author. Tel: +353 14023940; fax: +353 14022997.
E-mail address: lacour.ayompe@dit.ie (L.M. Ayompe).

0360-5442/$ — see front matter © 2010 Published by Elsevier Ltd.
doi:10.1016/j.energy.2010.06.021

electricity generated, which is fed into the utility grid (such as in
other countries and Ireland). Moreover, they cannot cope with
variable electricity prices based on time of use, which is likely to
become more common as smart metering becomes widely
deployed.

Smart meters provide much more precise information on elec-
tricity consumed as well as the time of use. They are intelligent
two-way communication devices with digital real-time power
measurement. They offer the opportunity for remote operation and
remote meter reading as well as the potential for real-time pricing,
new tariff options and demand side management.

During the day when solar radiation is available, a grid-con-
nected PV-system generates AC power. If the PV-system is installed
in a domestic dwelling, the AC power is fed into the main electrical
distribution panel of the house from which it can provide power to
the house for on-site consumption, the excess is supplied to the
utility grid. Fig. 1 shows representative plots of measured electricity
generated from a 1.72 kW PV-system located in Dublin, Ireland,
average electricity consumption of a representative domestic
dwelling in Ireland and the quantity of electricity exported and
spilled to the grid on the 1st of June 2009.

The objective of this paper therefore, is, to develop a validated
real-time mathematical model that predicts the electricity output
of small-scale grid-connected PV-systems. The model can be used
to generate time-stepped output data, which can be combined with
domestic demand data to predict the quantity of on-site electricity
consumption based on different users’ demand profiles.

(2010), doi:10.1016/j.energy.2010.06.021
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Nomenclature Subscripts
a ambient
A area (m?) AC alternating current
AM air mass c PV-cell
C heat capacity JK1) DC direct current
Gm in-plane solar radiation (W m2) inv inverter
he¢ forced convective heat transfer coefficient (Wm 2 I(*) m module
hew convective heat transfer coefficient due to wind MPP maximum power point
(Wm—2K™1) n,c nominal cell
hy radiative heat transfer coefficient (Wm—2K™1) PV photovoltaic
Nm number of modules r reference
Qc absorbed solar radiation (W) STC standard test condition
0 thermal losses by radiation (W) w wind
Q. thermal losses by convection (W)
NOCT  normal operating cell temperature (45 °C) Greek symbols
Pe electrical power (W) I absorptivity
T temperature (°C) I’} temperature coefficient of Py, of the PV-panel
UL overall heat transfer coefficient (Wm™2 K1) (0.003°C1)
Vi wind speed (ms™!) i efficiency (%)
PMAE percentage mean absolute error (%) T transmisivity
o Stefan—Boltzman’s constant (5.67 x 1078 Wm2K~4)
€ emissivity

2. PV output modelling

PV output modelling involves identifying all independent vari-
ables and establishing their mathematical relationships with power
output. The variables identified include solar radiation; wind
speed; ambient temperature; cell efficiency; cell temperature and
module area.

Given that current smart metering practice is based on 30-min
intervals, the mathematical representation of the PV-system was
simulated at 30-min intervals daily using measured data between
April 2009 and March 2010. In order to achieve this, it is necessary
to accurately predict the PV-cell temperature, which influences the
cell efficiency. Once the cell efficiency and inverter efficiency at any
given instant are accurately predicted, the PV-power equation is
then used to calculate the power output from the PV-system.

2.1. PV-cell temperature

The temperature of PV-cells is one of the most important
parameters used in assessing the performance of PV-systems and

==-Difference

— - =Electricity demand

=PV generated electricity

—_
=
=<
=
B
o0
g 3
= oooooooocoloooocgooooooco
S SRR I R R A A B N = B =T = TR T = . = T = = B = I = B =
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Fig. 1. Representative daily domestic scale PV-system electricity generation and
demand.

their electricity output. The cell temperature depends on several
parameters such as the thermal properties of the materials used, type
of cells, module configuration and local climate conditions [5,6].

A PV-module’s efficiency strongly depends on its cells’ operating
temperature. PV-cell temperatures are very difficult to measure
since the cells are tightly encapsulated in order to protect them
from environmental degradation. The temperature of the back
surface of PV-modules is commonly measured and used in place of
the cell temperature with the assumption that these temperatures
closely match [7].

From a mathematical point of view, correlations for PV-cell
operating temperature (Tc) are either explicit in form, thus giving T.
directly, or implicit, i.e. involve variables such as cell efficiency or
heat transfer coefficients, which themselves depend on T.. In the
latter case, an iteration procedure is necessary to calculate the cell
temperature [8]. Six models for PV-cell temperature evaluation
were identified from literature. They include five explicit and one
implicit model, the latter comprising of a steady-state model.

2.1.1. Explicit correlations

The explicit correlation models express the PV-cell temperature
as a function of ambient temperature, solar radiation, wind speed
and other system parameters ignoring heat exchange dynamics
between the module and its environment. The first correlation
expresses the cell temperature of a PV-module T; in Eq. (1) as [9]:

Gm

Tc == Ta +m
where, 1o = 0.9 [10].

A simplified model of Eq. (1) is given in Eq. (2) as [11,12]:

(NOCT - 20)(1 - 17—;) 1

Te = Ta + g5o(NOCT — 20) 2)

Eq. (3) gives the simplest explicit correlation for the operating
temperature of a PV-cell with the ambient temperature and inci-
dent solar radiation flux [8]. Earlier reported values for h,, were in
the range 0.02—0.04 Wm~—2K~! [13]. In this study, h,, was deter-
mined to be 0.018 Wm 2K~! using nonlinear regression analysis
on measured data.

(2010), doi:10.1016/j.energy.2010.06.021
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Te = Ta + Gmhw (3)

where, T. and T, are in degrees Kelvin.
The PV-module temperature can also be determined using
Eq. (4) proposed by Tamizh Mani et al. in [14] given as:

Te = a+ bGm + cTa + dViy (4)

where, q, b, c and d are system-specific regression coefficients with
values of —1.987, 0.02,1.102 and —0.097, respectively, and R? of 0.97
determined using measured data from the Dublin site.

King in [8] proposed an expression for PV-cell temperature
given by Eq. (5) as:
Tc_Ta+GG—m av2 +bVy +c (5)
where, a, b, and c are coefficients with values of 0.043, —1.652 and
24.382, respectively, and R* of 0.96, again determined using
measured data.

Other explicit correlations reported in literature [8] are based on
field performance data, which are site specific and, therefore, not
applicable in this case.

2.1.2. Steady-state analysis

In this approach it is assumed that, within a short-time period
(normally less than 1 h), the intensity of the incoming solar irra-
diance and other parameters affecting the PV-module’s behaviour
are constant. If the variation in the overall heat loss rates of the PV-
module is small, then it can be assumed that the rate of heat
transfer from the PV-module to the environment is steady and the
temperatures at each point of the PV-module are constant over
a short-time period [7].

The equation for the PV-cell temperature operating under
steady state is derived assuming that the incident energy on a solar
cell is equal to the electrical energy output of the cell plus the sum
of the energy losses due to convection and radiation. The resulting
energy balance equation is given as [15,16]:

QG*Pel*Qr*Qc:O (6)
Substituting the relevant terms in Eq. (6) results in Eq. (7) given
as [17]:

1aGmAc — 1:GmAc — 2htAc(Te — Ta) — 2hAc(Tc — Ta) = 0 (7)
From Eq. (5), the PV-module temperature is given as:

(tat — 7py)Gm
2(hy + he)

where, T. and T, are in degrees Kelvin.

Tc = + Ta (8)

2.1.3. Heat transfer coefficients
The radiative heat transfer coefficient between the module front
and the sky, and the module rear and the ground (h;) is given as [18]:

he — ae(Tg + Taz)(Tc T 9)

The convective heat flow is dominated at the module front by
forced convection driven by wind forces and at the module rear,
depending on the installation situation, by free laminar or turbulent
convection. The convective heat transfer coefficient is given as [17]:

he = y/h¢ +hcfree (10)
hew = 4.214 +3.575Vy, (11)
hc‘free = 1-78(TC - Ta)1/3 (12)

Because of the wide discrepancies in the value for h, it is
difficult to choose a particular value. Duffie and Beckman [18]
suggested the use of the expression for h¢,, proposed by McA-
dams [19] for flat plates exposed to outside winds:

Nolay in [10] uses the following relationship:

hew = 5.82+4.07Vy (14)
2.2. PV-cell and module efficiency

The most widely known model to predict the efficiency of
a PV-cell () is given as [10,20]:

Ne = Ml = B(Te — Tr) + ylog(Gm/1000)) (15)
where, T; =25 °C, vy =0.12.

Most often Eq. (15) is given with v =0 and it reduces to a linear
dependence of 5. on temperature given as [10,16]:

Ne = Mncll = B(Tc — 25)] (16)

The efficiency of solar cells can also be expressed as being
dependent on the incident solar radiation and cell temperature. The
efficiency at a particular irradiance or temperature is the result of
the nominal efficiency minus the change in efficiency given as [2]:

e = e [1+ 0In 3555 — B(Te — 25)| (17)

Another expression for the cell efficiency assuming that the
transmittance—absorbance losses (ta/Up) are constant over the
relevant operating temperature range is given as [21]:

e = |1~ 098 ga(NOCT - 20) — 4(T, - 25) (18)
Durisch et al. [22] developed a semi-empirical PV-cell efficiency
model given as:

Gm Gm\°© T AM AM \ &
T = ﬂnca[b Go * (Cio) } [d+e +f (AMO) ]

where, Gop=1000 Wm ™2, T; =25 °C, AMp = 1.5.

The parameters a, b, ¢, d, e, f and g are regression coefficients
with values of 1.249, —0.241, 0.193, 0.244, —0.179, —0.037 and
0.073, respectively, and R? of 0.99 which were determined using
measured data from the Dublin site. The air mass (AM) is the ratio
of the mass of air that the direct radiation has to traverse at any
given time and location to the mass of air that it would traverse if
the sun were at the zenith [23]. The air mass is calculated for any
time of day at any day of the year from the sun’s altitude ¢ (in
degrees) using the equation given as [24]:

(19)

AM = 1/cos(90 — @) (20)

The nominal efficiency (n,c) of PV-cells is given as [2]:

Pyvpp(sto)

nl'lC = AC X GSTC (21)

The nominal efficiency of a PV-module is given as:

Mnm = Mnc X PF (22)

The pack factor (PF) is the ratio of the total area of PV-cells (Ac)
over the area of the PV-module (Ar,) and is given as [12]:

(2010), doi:10.1016/j.energy.2010.06.021
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Table 1 Table 2
Percentage mean absolute error (PMAE) for PV-cell temperature predictions. PMAE for predicted PV-array power output.
Eq. (1) Eq. (2) Eq. (3) Eq. (4) Eq. (5) Eq. (8) Eq. (1) Eq. (2) Eq. (3) Eq. (4) Eq. (5) Eq. (8)
PMAE 14.4 233 8.2 73 71 8.8 Eq. (15) 9.1 11.6 9.8 9.7 9.9 10.2
Eq. (16) 12,5 15.4 134 133 134 13.8
Eq. (17) 12.3 15.2 132 13.1 13.2 135
Eq. (18) 114 12.0 11.2 113 11.3 11.5
A Eq. (19) 7.8 11.0 7.3 7.3 7.7 83
PF = =< (23)
Am
The measured PV-module efﬁciency is given as [18] 1600 ——Measured —--- Modelled using Eqs. 1 & 15+ Modelled using Egs. 3 & 19
Vbclpc —~ 1400
Nexp = G4 (24) g
m~im 5 1200
z
2
2.3. PV-array power output £ 1000
o E 800
The DC power output from a PV-array is given as: g
2 600
=
Ppc = Nm X Ny X ML X PF X Gy X Am (25) £ 400
>
nL accounts for losses that reduce power output from standard “
test conditions (STCs). These losses include the difference of the
operating PV-cell temperature from the standard 25 °C, the devi- Q 93/06/2009 04/06/2009 05/06/2009

ation from the maximum power point, the ohmic losses of the
conductors, the cleanness of the PV-module surface, the deviation
of the solar irradiance from an ideal path in order to produce
a photoelectron in the cell (optical path deviation), the aging of the
PV material, etc [25]. Kaushika and Rai [26] investigated mismatch
losses in solar photovoltaic cell networks while Mavromatakis et al.
[25] presented expressions for reflection and difference in oper-
ating PV-cell temperature losses. Due to the complexity of model-
ling the individual losses, 0 is often modelled using Egs. (15)—(19)
representing the terms that are multiplied by the nominal PV-cell
efficiency (nn ). Eq. (25) therefore reduces to

Ppc = Nm x e X PF X Gy X Am (26)

2.4. Inverter efficiency

The inverter efficiency is given as [9]:

P:
Ninv = va«,n (27)
PV.n

The normalised inverter output Piyp iS given as a second-order
polynomial by Peippo and Lund in [9] as:

—Measured --—-Modelled using Eq. 4 - Modelled using Eq. 5

50

PV-cell temperature (°C)

03/06/2009 04/06/2009

Time

05/06/2009

Fig. 2. Measured and modelled PV-cell temperature.

Time

Fig. 3. Measured and modelled PV-array maximum DC power output.

Pinv,n = kO + k] PPV,n + kZPI%V,n (28)
where
P,
Ppyn = p—— (29)
inv,rated
and
P.
Pinv,n = 2 e (30)
inv,rated

ko is the normalised self-consumption loss, k; is the linear effi-
ciency coefficient and k; is the coefficient for losses proportional to
input power squared as defined by Peippo and Lund in [9]. Ppy, and
Pinvn are the normalised inverter input and output power, respec-
tively. Ppy and Pjyy are the PV-array DC input and AC output from the
inverter at any instant of time, respectively, while Pipyrated is the
rated inverter input capacity. A regression analysis carried out on
normalised inverter input and output power yielded values for the
ctzmstants ko, k1 and k; of —0.001, 0.926 and 0.004, respectively with
R of 1.

2.5. PV-system power output

The PV-system AC power output is given as:

Pac = MinvPpc (31)
Table 3
Percentage cumulative error for predicted PV-array output energy.
Eq. (1) Eq. (2) Eq. (3) Eq. (4) Eq. (5) Eq. (8)

Eq. (15) 25 6.5 3.8 3.8 3.8 42

Eq. (16) 8.0 121 9.4 9.4 9.4 9.7

Eq. (17) 7.7 118 9.1 9.0 9.0 9.4

Eq. (18) 33 7.3 4.6 4.6 4.6 5.0

Eq. (19) 2.3 6.7 0.7 0.6 0.6 1.4

(2010), doi:10.1016/j.energy.2010.06.021
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Table 4 1600 ——Measured === Modelled using Egs. 1 & 15 === Modelled using Egs. 3 & 19
PMAE for predicted PV-system AC output power.
Eq.(1) Eq.(2) Eq(3) Eq(4) Eq.(5) Eq.(8) 1400
Eq. (15) 10.0 124 10.7 10.6 10.7 11.1 1200
Eq. (19) 8.4 11.7 79 79 83 9.0

3. Modelling

MatLab software was used to develop a programme to predict
the energy output from a trial PV installation using measured
weather data at 30-min intervals between April 2009 and March
2010. At every given instant, the PV-cell temperature was modelled
using Eqs.(1)—(5) and (8). PV-array DC power and PV-system AC
power outputs were modelled using Eqs. (26) and (31),
respectively.

3.1. PV-system description

The PV-system used to validate the above models consisted of
al72 kWp PV-array composed of 8 modules covering a total area of
10 m? installed on a flat roof at the Focas Institute building, Dublin
Institute of Technology, Dublin, Ireland. The 215 W}, Sanyo HIP-
215NHE5 PV-modules are made of thin monocrystalline silicon
wafer surrounded by ultra-thin amorphous silicon layers with anti-
reflective coatings that maximized sunlight absorption [27]. The
unshaded modules were installed facing due south and inclined at
53° to the horizontal corresponding to the local latitude of the
location. The roof was approximately 12 m high and the modules
were mounted on metal frames that were 1 m high.

A 1700 W AC power single-phase Sunny Boy inverter was
installed to convert the DC electricity from the PV-array to AC that
was fed into the 220—240 V AC electrical network of the building.
The data acquisition system consisted of a Sunny Boy 1700 inverter,
Sunny SensorBox and Sunny WebBox. The Sunny SensorBox was
used to measure in-plane global solar radiation on the PV-modules.
Additional sensors for measuring ambient temperature, wind
speed and temperature at the back of the PV-module were con-
nected to the SensorBox. The SensorBox and the inverter were
connected to the Sunny WebBox via a serial RS485 link and a Power
Injector. Data was recorded at 5-minute intervals using the
WebBox.

3.2. Data and results comparison

In order to quantify variations between predicted and measured
values, percentage mean absolute error (PMAE) was used. It eval-
uates the percentage mean of the sum of absolute deviations
arising due to both over-estimation and under-estimation of indi-
vidual observations. PMAE is given as:

(C; — M) A
PMAE = le;[zvl,] x100% (33)

N is the total number of observations while C; and M; are the ith
calculated and measured values, respectively.

3.3. Weather data

One year’s data collected at 5-min intervals between April 2009
and March 2010 at the test site was aggregated to 30 min and used
for model validation. The data composed of solar radiation, ambient
temperature, PV-module temperature, wind speed, PV-array DC
current, PV-array DC voltage and PV-system AC power output.

1000

600

PV-system maximum power (W)
o®©
(=3
(=]

03/06/2009 04/06/2009

Time

05/06/2009

Fig. 4. Measured and modelled PV-system maximum AC power output.

The monthly average daily total solar insolation varied between
1.11 kWh/m?/day in December and 4.57 kWh/m?/day in June while
the annual total measured in-plane solar insolation was
1043.1 kWh/m?. The monthly average daily wind speed varied
between 2.5 m/s in February and 6.6 m/s in November. The
monthly average ambient temperature varied between 6.0 °C in
January and 18.8 °C in August while the PV-module temperature
varied between 8.8 °C in January and 23.8 °C in June. Maximum
recorded values for solar radiation, ambient temperature, PV-
module temperature and wind speed were 1031.0 Wm 2, 27.0 °C,
45.8°C and 16.3 ms™! in August, June, September and November,
respectively.

4. Results and discussions
4.1. PV-cell temperature

Table 1 presents PMAE for PV-cell temperature predictions using
the models in Eqs. (1)—(5) and (8). The results show that the
empirical models in Egs. (4) and (5) produce the least PMAE of 7.3%
and 7.1%, respectively. Where field trial data is not available to derive
the empirical coefficients, Eq. (1) can be used to predict the PV-cell
temperature with a higher PMAE of 14.4%. Fig. 2 shows plots of
measured and modelled PV-cell temperature using Eqs. (4) and (5).
It can be seen from Fig. 2 that the predicted PV-cell temperatures
show good correlation with the measured data.

4.2. PV-array output power

PMAE for predicted PV-array DC power output using PV-cell
temperature models (Egs. (1)—(5) and (8)) and modified PV-cell
efficiency models (Egs. (15)—(19)) are presented in Table 2. The
results show that when field trial data is available to obtain
regression coefficients, the empirical models for PV-cell tempera-
ture (Egs. (3) and (4)) and PV-cell efficiency (Eq. (19)) yield the
lowest PMAE of 7.3%. Where only weather data is available, Egs. (1)
and (15) can be used to predict PV-array output power with PMAE
of 9.1%. Fig. 3 shows plots of measured and modelled PV-array
maximum DC output power. It can be seen that the predicted PV-
array maximum output power shows good correlation with the
measured data.

Table 5
Percentage cumulative error for predicted PV-system AC output energy.

Eq. (1) Eq. (2) Eq. (3) Eq. (4) Eq. (5) Eq. (8)

Eq. (15) 33 74 46 46 46 5.0
Eq.(19) -16 75 14 1.3 14 2.2
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Table 3 shows percentage cumulative errors for predicted PV-
array output energy against the measured power output of
1661.4 kWh. The empirical models in Egs. (3)—(5) and (19) have
percentage cumulative errors of 0.6—0.7% while the non-empirical
models using Eqgs. (1) and (15) have an error of 2.5%. Both models,
however, tend to over-estimate PV-array power output during
sunrise.

4.3. PV-system AC output power

PMAE for PV-system AC power prediction using modelled PV-
cell temperatures (Egs. (1)—(5) and (8)) and PV-cell efficiency (Egs.
(15)—(19)) are shown in Table 4. The empirical models (Egs. (3), (4)
and (9)) give the lowest PMAE of 7.9% while the non-empirical
models (Eqgs. (1) and (15)) yield a PMAE of 10%. Again the results
show that more accurate predictions are obtained when measured
PV-system performance data are used to generate empirical
models. Fig. 4 shows measured and modelled PV-system AC output
power. It is seen in Fig. 4 that both the empirical and non-empirical
models show good agreement with measured data.

Table 5 presents percentage cumulative errors for PV-system AC
energy output prediction using PV-cell temperature models (Eqgs.
(1)—(5) and (8)) and PV-cell efficiency models (Egs. (15) and (19))
against the measured PV-system AC energy output of 1522.5 kWh.
The empirical models (Egs. (3)—(5) and (19)) result in over-esti-
mations of 1.3—1.4% while the non-empirical models (Egs. (1) and
(15)) have an over-estimation error of 3.3%.

5. Conclusions

Introduction of smart meters in countries such as Ireland,
Belgium and the UK which are currently trailing this technology
with a view of its widespread deployment necessitates more
accurate prediction of PV-system power output within short-time
intervals such as 30 min. In this study, measured field performance
data for a domestic-scale grid-connected PV installation was used
to validate some of the widely quoted correlations in literature
employed to model PV-cell temperature and efficiency for power
output prediction. The best prediction of PV-system AC output
power was obtained using Eq. (4) for PV-cell temperature and Eq.
(19) for PV-cell efficiency with percentage mean absolute and
cumulative errors of 7.9% and 1.3%, respectively. Results show that
for short-term PV-array power output prediction as is applicable to
smart metering, two options are available.

e Where field performance data of the PV-system is available,
empirical models for PV-cell temperature (Egs. (3) and (4)) and
PV-cell efficiency (Eq. (19)) are to be used.

o Where field performance data of the PV-system is not available,
the non-empirical models for PV-cell temperature (Eq. (1)) and
PV-cell efficiency (Eq. (15)) are to be used.

In both cases, inverter performance data is required to model
the PV-system AC power output. The proposed models should help

to establish the dynamic performance of PV-systems when
combined with time-of-day billing systems.
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