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AN ESSENTIALLY SEMI-RIGID CLASS
OF MODULES

B. GOLDSMITH

Introduction

A class € of abelian groups is said to be rigid if Hom (4, B) = 0 for all pairs of
different groups A, Be . The class ¥ is said to be semi-rigid if Hom (4, Bj # 0
implies Hom (B, 4) = O for all pairs of different groups 4, Be . (This is a slight
modification of the concept used by Fuchs in [4] where in addition it is required that
for each 4 € ¥, Hom (A, A) should be a subgroup of the group of rationals @.) It is
known from model theory that the existence of a proper (that is, not a set) rigid class
of groups is not provable in ZFC (see for example [9, §17, 196-203]. In a recent
paper [5], Gobel and Shelah have established the existence of a semi-rigid class of
cotorsion-free abelian groups. In this note we wish to investigate the analogous
problem for reduced torsion-free modules over a complete discrete valuation ring R.
Since all such modules are necessarily separable, there is no possibility of finding a
rigid or semi-rigid class. However, exploiting the concept of inessential
homomorphism used previously in 1, 2, 6, 7], it is natural to raise the question of
the existence of essentially rigid and semi-rigid classes. We show in this note that the
existence of an essentially semi-rigid class is easily established.

2. Notation and some preliminaries

Throughout we shall suppose that R is a complete discrete valuation ring of
cardinality v having unique prime ideal p. Our notation will follow the standard
works of Fuchs [3, 4]; set-theoretic concepts may be found in Jech [8].

For an infinite cardinal A, let S, denote a free R-module of rank 4; note that
IS;] = Av. Let §, denote the completion of S, in the p-adic topology. (All topological
references will be to this topology.) It follows then that |S,| = |S, % = A%v™. Define
the class I" by

I = {44 is an infinite cardinal with 2™ = 2" > v} .

Lemma 1. (i) T is a proper class.
(i) IfAeT then|S) = 2~
Proof. (ii) is trivial. To show that (i) holds note that if « is any cardinal = v

then x = sup {a, 2% 2%, ...} belongs to I". (In fact « is a strong limit of cofinality .)
The following definition was introduced in [7].
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DerFiniTION.  An R-module G is said to be a maximal pure submodule of the 3
complete R-module S if G is a pure submodule of S containing S and S/G =~ Q, the y

field of fractions of R.

For each AT let {G;} (i€l,) denote the family of maximal pure submodules
of §,.

LemMA 2. For each 2 e, |I,] = 2%

Proof. For AeT, 5,/S,is a Q-vector space of dimension 2% By a well-known
result on vector spaces there are precisely |Q|* subspaces of §,/S, of codimension
one. Since a maximal pure submodule is just the preimage of a subspace of
codimension one, there are 2% maximal pure submodules of S, that is, |I,} = 2%

Lemma 3. Ifa, feT and a = B, then [Hom(S,, S,)| < 2

Proof. Every homomorphism from S, to S,; is determined by its effect on the
basic submodule S, of rank «. Hence there are at most |[S 4 such homomorphisms. If
o, BT and o = B then this upper bound becomes 2% = 2%

3. An essentially semi-rigid class

The concept of an inessential homomorphism is a modification of a concept
introduced by Corner at the Montpellier Symposium 1967, it has been used
previously for working with modules over a complete discrete valuation ring by
Goldsmith [7] and Dugas, G&bel and Goldsmith [17; in a wider context it has also
been exploited by Dugas and Gobel [2].

DeriniTION. A homomorphism ¢ : G — H, where G, H are reduced torsion-free
R-modules, is said to be inessential if the unique extension ¢ of ¢ from G — H is such
that G¢ < H. The collection of inessential homomorphisms from G to H is denoted
by Ines (G, H).

DreriniTioN. A class € of R-modules is said to be essentially semi-rigid if
Hom (A4, B) # Ines (A, B) implies Hom (B, A) = Ines (B, 4) for all pairs of different
modules 4, B e €. An essentially rigid class is defined similarly.

Note. If A is complete then every homomorphism 4 — B is automatically '
inessential and so when we raise the problem of the existence of essentially rigid and
semi-rigid classes we are, of course, looking for non-trivial examples, that is,
examples in which the modules in the class are not complete.

THEOREM. If R is a complete discrete valuation ring then there exists a non-trivial
essentially semi-rigid class of R-modules.

Proof. The essentially semi-rigid class will be constructed by choosing
inductively one module from each of the sets {G,;} (ie I,, A e T'). Thus suppose that
the collection {G,} (4 < {), where 4, { € T, has been constructed with the pr operty
that

Hom(G,;, G,) = Ines (G,, G,) fora<l<(.
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Fix any o < { and consider the collection {Hom (G, G,)} (i € I,). Define the subset

J,of I. by
J, = {iel.|Hom(Gy, G,) # Ines (G, G,)} -

We claim that |J,] < 2% For suppose that |J J > 2%and pick a set of homomorphisms
{¢:: G, — G,} (ieJ,)such that each ¢, is not inessential. Since each homomorphism
¢, extends uniquely to a homomorphism é:: S; — §,, we deduce from Lemma 3 that
é; = cZ)j for some i # jeJ,. However, it follows easily from the property of being
maximal pure that S. = G+ G and hence S.¢; € G, ¢+ G;0; < G, contrary to
the choice of ¢;. Thus |/} < 2%, Since |I] = 2% we may pick ipe I\ U J, and
o< §
clearly Hom (G, G,) = Ines (G, G, for all « < {. Set G, = G, The construction
is completed by transfinite induction. Since the class of R-modules {G,} (A& T) has
the property Hom (G, G,) = Ines (G, G,) for « < 1, and each G, is a maximal pure
submodule of §, (and hence is not complete), it follows that {G,} (AeT) is the
desired non-trivial essentially semi-rigid class.
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