














CHAPTER 3: VOICE-GENDER CONVERSION

frame boundaries of the synthesis and analysis frames. The boundaries are
marked in the figure by dashed lines.

In the figure, z(n) denotes the input waveform and y(n) denotes the out-
put waveform. (a) shows the original segment to be expanded. It is windowed
with a rectangular window of length w. In (b), the original frame and a du-
plicate of it are aligned with their peaks, as indicated by the dashed line.
(c) shows the result of the overlap add procedure, i.e. a segment which has
been expanded by the natural expansion factor a,. resulting in a waveform
of length w - aye. As with SOLA, the natural expansion factor ay, is a local
signal property. (d) depicts the next windowing procedure; the input signal
window is advanced by a time step. The new part of length step is copied
and appended to the output signal y(n), as seen in (e). (e) also shows the
next window position for the following expansion step. Finally, (f) represents
how the small segments of length step are repeatedly copied and appended
to form the output waveform y(n). The dashed lines in (c), (d) and (e) mark
the frame boundary and it can be clearly seen that the appended segment of
length step is a natural continuation of the output waveform so that glitches
are avoided.

As for SOLA, the desired scaling factor oy, is the constant scaling factor
chosen by the application or user that is calling AQLA, while the natural
scaling factor oy, is a time-varying local signal property. The relationship
between the natural scaling factor ay., the desired scaling factor g, the
window length w and the step width step for time-scale expansion is described
in the following two equations:

step - Qe + step - al, 4 ... + step- ot N w - Qg (3.3)

1-a l-a
= step = w - = = —=

(3.4)

1—-ai - 1— age
The natural scaling factor oy depends on the local signal properties and is,
as such, variable for a time-varying signal. As for SOLA, there might be a
discrepancy between a,. and the desired scaling factor ag4,, which is user-
specified. Therefore, step has to be updated for every advance step of the
analysis window. This mechanism achieves accurate adaptation to the local
signal characteristics and ensures that the overall signal is expanded by the
desired scaling factor age.

Time-scale compression can be accomplished in a similar manner by dis-

carding the left and right of the overlapping region, thus leaving the naturally
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CHAPTER 3: VOICE-GENDER CONVERSION

compressed segment. The step size in that case is calculated as

(3.5)

where ay. is the natural compression factor of the local segment and a4, is
the desired overall compression factor.

The comparison of the computational burden between SOLA and AOLA
[Lawlor '00] shows that AOLA needs an order of magnitude fewer operations
than SOLA. On the other hand, the output quality of AOLA is similar to
that achieved with SOLA, which makes it an attractive alternative to SOLA.

3.2.4 Waveform Similarity Over-Lap and Add

Another variation of SOLA is the Waveform Similarity OLA (WSOLA) algo-
rithm, which was presented by Verhelst [Verhelst '93]. The main difference
between this and the other approaches is the manner in which the best anal-

ysis frame alignment is determined.

Three different successful methods of optimising the analysis frame dis-
placement were suggested:

e a cross-correlation coeflicient:

ME

(m, ) = (n+71" ~1)L) + Ay + Dz(n + 77 Y(mL) + &)

(3.6)

=0

3

e 3 normalised cross-correlation coeflicient:
c{m, 6)
N-1
> z¥(n+ 7Y mL) + §)

n=0

cn(m,d) = (3.7)

s or a cross Average Magnitude Difference Function (cross-AMDF) coef-

ficient:

N-1
=Y ¥ n+7 ({(m—1)L)+Apor+ L) ~z(n+77"(mL) +8)]

n==0
(3.8)
In the above formuiae, the symbols have the following meaning: c is the

similarity measure which is to be maximised, z(n) is the analysis (input)

waveform, m is the current segment number, L is the synthesis (output)
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segment length, A,, is the tolerance or deviation factor and é is a variable
tolerance factor for the mth iteration, i.e. § = 4A,,.

The tolerance factor A is a means of controlling the analysis window
placement. The tolerance must not be exceeded in the search for the optimum
alignment.

The basic synthesis equation of WSOLA is:

Su(n - Ly) z(n + 771 {Le) + B — L)

_ k
y(n) = So(n L) (3.9)

where y(n) is the modified (output) waveform, z{n) is the input waveform
to be modified, v is a windowing function to segment z(n), Ay is is the
tolerance or deviation factor, 7 is the time-warping (scaling) function and L,
is the synthesis instant.

The author claims that WSOLA is a robust and efficient TSM algorithm
in the tradition and of the quality of SOLA and PSOLA, but does not present
any objective test results to quantify that statement.

3.2.5 ‘Global and Local Search TSM

The Global and Local Search TSM (GLS-TSM) algorithm is a development
of Yim [Yim ’96). It is OLA-based and introduces a computationally more
efficient way of frame alignment than SOLA to preserve the pitch information.
A two-stage approach to locating the optimum analysis frame displacement
is applied, consisting of global similarity and local similarity measures. The
global similarity is defined as the similarity over an interval, and the local
similarity corresponds to that around a sample point within this interval.

Signal properties are only measured at the zero-crossing positions. The
following equation defines the number of zero-crossing points:

L-1
z = Y |sign{z(k+m)) — sign(z(k +m+1))|  (3.10)
m=0
where
ign(z) 1 forz>0
sign(z) =
g ~1 forz <0

GLS-TSM was tested with a wide range of musical instruments and also
with singing with background music, all at a sampling frequency of 44.1 kHz,
i.e. audio CD quality. In this range of application, it is shown to be 40 times
faster than SOLA, but it was not tested on speech signals or at lower sampling

rates.
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3.2.6 Envelope Matching Time-Scale Modification

The Envelope Matching Time-Scale Modification (EM-TSM) is another vari-
ation of SOLA and was introduced by Wong [Wong 98] to reduce the compu-
tational complexity of SOLA . It uses a so-called envelope matching function
to determine the optimum analysis frame alignment. It modifies the nor-
malised cross-correlation function by using only the sign information of the
analysis and synthesis waveforms for the frame displacement calculation. The
modified function R(k) is called the Envelope-Matching Function (EMF) and
is defined in the following equation:

L-1
> sign(y(m - S, + k)) sign(z(m - S, + 1))
R(k) = = (3.11)
L

where

ign(z) 1 forz >0
sign(z) =

g —1 forz <0

where y is the output waveform, z is the input waveform, m is the input frame
number, S, is the synthesis frame length, S, is the analysis frame length, L is
the overlap length between y and z, and k& is the signal range that is processed,
which lies between 0 and N/2, with N being the analysis frame length.

The advantage of this function is that it uses only the signs of the samples
and thus multiplies only +1 and/or --1. This reduces the computational
burden significantly as only the first bit of the number representation has to
be read, which does not imply a great computational load.

A comparison in computational efficiency shows that EM-TSM is 10? times
faster than SOLA. However, Wong notes in the result section of his paper that
the quality of the described method did not reach that of SOLA.

3.2.7 Summary of TD-TSM Methods

The purpose of the investigation of TD-TSM methods was to find the most
suitable algorithm for the presented VGC system with regards to quality,
computational load and robustness in operation. The most established TSM
methods are SOLA and PSOLA, which are used in commercial applications
such as text-to-speech synthesis systems based on synthesis by concatena-
tion of prototype waveforms. The output quality is high and the robustness
of SOLA is slightly higher than that of PSOLA, which is because PSOLA

additionally requires a reliable means of pitch detection for operation. The
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computational load is quite high due to the frame-alignment procedure based
on correlation. AOLA achieves the same output quality as SOLA, operates
robustly and has a ten times lower computational load than SOLA due to
a more efficient frame alignment procedure. The performance of WSOLA is
stated to be of equal quality to SOLA or PSOLA at a high computational
efficiency, but there was no direct qualitative performance comparison pre-
sented. GLS-TSM was tested on a very specific musical application, where it
was stated to be 40 times faster than SOLA. It was, however, not tested on
speech signals or at lower sampling rates than 44.1kHz. EM-TSM is stated
to be faster than SOLA, but suffers from a inferior output quality and is thus
not considered suitable for the application in the VGC system.

It can therefore be concluded that AOLA is the best choice for the pro-
posed VGC system, as it is faster than SOLA and PSOLA with a similar
quality, better tested and established than WSOLA, more general than GLS-
TSM at a slightly lower speed, and delivers a higher quality than EM-TSM
at a slightly higher computational load.

3.3 Digital Filter Design

The outlined VGC system requires filtering to separate the lower three for-
mants F)-F3; and the fourth and higher formants, denoted as F,,, at the
analysis side, and two synthesis filters for the output signal generation. The
formant separation is achieved using two complementary filters, a low-pass
filter for the lower formants and a high-pass filter for the higher formants.
The synthesis filters are required to suppress artefacts originating from the
interim conversion steps.

There are two basic digital filters, Infinite Impulse Response (IIR) fil-
ters and Finite Impulse Response (FIR) or all-zero filters. IIR filters are
characterised by a denominator polynomial and a numerator polynomial and
therefore have poles and zeros in the z-plane. Equation 3.12 is the mathe-
matical expression of an IIR filter, where b;, a; are the coeflicients of the nu-
merator (feedforward) and denominator (feedback) polynomial respectively
[Oppenheim '89).

M ,
Z bzt
i=0

H(z) = (3.12)

N .
14+ 3 a;z7
=1

This type of filter is more general as it corresponds to the full structure of a
discrete-time LTI system. The structure implies a feedback path along with
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the forward path.

There are a number of design methods to obtain an IIR filter, which are
mainly adapted from analogue filter design methods, such as Chebychev or
Butterworth [Taylor ’83]. Their properties are:

o Their impulse response is in principle infinite (hence the name).
e They have a non-linear phase response.
e They are not always stable.

¢ The implementation requires delay, multiply and add functions, and
feedback mechanisms.

Due to the feedback structure of IIR filters, they are more prone to round-
ing errors due to the filter coefficient representation than FIR filters. The
feedback structure in the worst case accumulates the rounding errors, which
can lead to unstable filter behaviour, even though the ideal representation of
the filter coeflicients in the design step results in a stable filter.

There exists a zero-phase approach to linearise IIR filters, which is imple-
mented in the MATLAB command filtfilt {Oppenheim 89,
|Gustafsson ’96]). The procedure consists of a forward-backward filtering of
the data sequence, which means that the whole data sequence is fed forwards
through the filter and then reversed and fed backwards through the filter.
The output sequence is then the time-reversed result of the second filtering
process. This procedure results in an exact zero-phase filtering of the signal,
while the magnitude response of the filter corresponds to that of the [IR filter
squared [Matlab). However, this linearisation approach can only be applied
in cases where the whole data sequence is present for processing. In the case
of streamed data, this method cannot be used.

FIR filters are described by their numerator polynomial H{z) = % bz
and have therefore only zeros in the z-plane. This means that theyiz(:%nsist
only of a feedforward structure. The impulse response delivers the filter
coefficients b; as output.

FIR filters are very easy to design and can be efficiently implemented in
hardware due to their simple structure. Their properties are:

e Their impulse response has finite duration and lasts exactly the order
of the filter m plus 1.
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Method JI Description

Windowing Apply window to truncated inverse Fourier
transform of desired “brick wall” filter

Multiband  with [} Equiripple or least squares approach over sub-

Transition Bands bands of the frequency range, Remez

Constrained Least | Minimise squared integral error over entire fre-

Squares quency range subject to maximum error con-
straints

Arbitrary Arbitrary responses, including nonlinear phase

Response and complex filters

Raised Cosine Lowpass response with smooth, sinusoidal
transition

Table 3.1: Overview of FIR filter design methods [Matlab)

¢ They have a.linear phase response, provided the coefficients are sym-
metrical [Rabiner '75].

e They are always stable and in their implementation there is no feedback
loop.

e The implementation requires delay, multiply and add functions only.

Design methods for FIR filters are generally linear and include the window
method and frequency sampling method. Table 3.1 gives a list of FIR design
methods.

The primary disadvantage of FIR filters is that they often require a much
higher filter order than IIR filters to achieve a given level of performance.
Correspondingly, the delay of these filters is often much greater than for an
equal-performance IR filter. On the other hand, FIR filters can be designed
with a perfectly linear phase response and their implementation is very easy
using standard digital signal processors. In particular, the response delay due
to a higher filter order does not present an obstacle with today’s processor
and programmable logic devices clock speed.

Filter Implementation

The implementation structure for digital filters used by MATLAB, called direct
form II transposed, is shown in Figure 3.11. In the graph, z{m) is the input
data sequence, y(m) is the filtered output sequence, b; and q; are the weighting
coefficients for the forward and feedback paths and z~! are the delay taps to
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store the data. This implementation minimises the number of delay taps 21

required for internal data storage.

z(m)

y(m)
O i O B O NS

Figure 3.11: Direct form II transposed digital filter implementation
as used by MATLAB

Equation 3.13 shows the formula that corresponds to the implementation
diagram in Figure 3.11 for the m th sample.

y(m) = b z(m)+ z1(m+1)

z1{m) = by z(m)+ z2(m — 1) — ap y(m)
~ z (3.13)
Zo-2(m) = by x{m)+ zea(m — 1) — any y(m)
zp1(m) = by z(m) — an y(m)

The implementation is suitable for both IIR and FIR filters. In the case of
FIR filters, the feedback weighting factors a; are all set to 0.

3.4 System Implementation

The system outlined and described in Section 3.1 was implemented as a set
of MATLAB scripts and functions. The following sections describe the details
of the functional units and their realisation in MATLAB. At the end, the per-
formance of the system is observed in an objective manner using a synthetic
test signal to prove the function of the implementation.

The main functional units are the analysis filters, the deconvolution and

frequency scaling section and the synthesis filters, as shown in Figure 3.1.
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Since the analysis and synthesis filters are similar in function and design,
they are described first before the actual deconvolution and frequency scaling
is elaborated.

3.4.1 Digital Filtering in the VGC System

For audio applications, it is essential to keep signal degradation during digital
filtering as low as possible as the human ear is very sensitive to distortions
[Zwicker '91]. Filters can degrade signals due to different propagation delays
for different frequencies, i.e. a non-linear phase response. Therefore, care
must be taken to ensure a linear or only slightly non-linear phase response of
the filter. The linearisation approach for IIR filters described above cannot
be used for the VGC application, as it is not suitable for streamed data as
audio. Therefore, it was decided to use FIR filters for the filtering in the
VGC application.

Bandpass filtering is required in two steps in the implementation of the
system. The first stage is the use of the analysis filters to split the original
signal into the complementary frequency bands to separate the formants.
The second stage is the use of the synthesis filters to reduce the influence of
artefacts which are a result of the main processing.

The filters were designed using the MATLAB fir2 command, which is an
implementation of the frequency-sampling method. The filter order chosen
was N = 64 for the analysis filters and N = 128 for the synthesis filters.

Table 3.2 shows the average pitch and formant frequency ranges for female
and male voices. From this table, appropriate corner frequencies for the
subbands were chosen.

Frequency range (Hz)

Male Female

Pitch  F, | 119-132  213-233 Table 3.2: Average pitch

Formant F,| 302-673  378-841 and formant frequency
ranges of female and male
F, | 990-2172 1190-1586 voices [Childers "91b]

Fs |t 17072851 2014-3286

Fy || 32013572 3888-4265

For the VGC, the corner frequencies for the analysis filters were chosen as
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shown in Table 3.3. This results in transition bands with 300 Hz and 400 Hz

respectively to ensure a proper formant separation.

Conversion fCorner Lo fCorner Hi fTra.nsit Tabie 3.3 Filter corner

frequencies to separate the
subbands, corner frequen-

Female/Male | 3300Hz | 3700Hz | 400 Hz, Ci?gt}?;‘d transition band-
wi - :

Male/Female | 2900Hz | 3200Hz | 300 Hz

The synthesis filters have slightly steeper slopes than the analysis filters,
as seen in Figure 3.12, where the frequency responses of the analysis and
synthesis filters are given. In the diagram, the left-hand side shows the mag-
nitude response of the low-pass filters while the right-hand graph shows the
magnitude response of the corresponding high-pass filters. The solid line
corresponds to the analysis filter, while the dashed line belongs to the syn-
thesis filters. For the application, several analysis/synthesis filter pairs were

Magnitude Respanses Magnitude Besponses
e e T — T Ton Taes Tore

F I R LR R E R PR R S
@ Q
'5 g .....
S kS P
(=] on
[+] a
= =
10‘3 F: Ly
107
1 -B L__ 1 1 J_ 10-5 i J. .
0 2000 4000 6000 8000 0 2000 4000 6000 8000
Frequency in Hz Frequency in Hz

Figure 3.12: Frequency responses of the analysis (solid line) and syn-
thesis (dashed line) filters, low-pass filters (left) and high-pass filters

(right)

generated according to the sampling frequency of the speech data used. In
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Figure 3.12, the sampling frequency was 16 kHz. The choice of synthesis fil-
ters with a steeper slope than the corresponding analysis filters is to suppress
processing artefacts in the stopbands as much as possible.

3.4.2 Deconvolution and Frequency-Scaling

For the frequency-dependent subband voice-gender converter the spectral
envelope and the pitch frequencies of the speech signal must be separated
in order to enable manipulation of the pitch signal independently from the
formant spectrum. A suitable, computationally efficient and therefore fast
means of achieving a separation is Linear Predictive Analysis (LPA) {see Sec-
tion 2.3.2.2) in conjunction with inverse filtering. The LP coefficients are
obtained using the MATLAB command 1pc(x,n), which calculates the real
predictor coeflicients of nth order on the sequence x. The predictor coefficients
are then used for inverse filtering the sequence x to obtain the residual, which
is then frequency-scaled. The frequency-scaling is achieved using AOLA TSM
and resampling, as described in Section 3.2. The MATLAB commands for this
are aola for the TSM step, and resample for the resampling operation.

Detailed Implementation Overview

AOLA, as implemented in MATLAB by Lawlor [Lawlor ’00), was used in the
realisation of the VGC in two specific manners: to achieve the formant scaling
and to accomplish the excitation scaling. It is called both from VGCSCALE,
firstly to achieve the formant shift by time-scaling the entire input signal and
then resampling it to its original length, and secondly to time-scale modify
the residuals of the individual frames resulting from the LP analysis and
deconvolution.

The implementation of the VGC tool consists of the following MATLAB-
files, which are represented in Appendix B.1:

output =VGC(input ,Fs,direction) as the central tool taking in the input
signal to be manipulated, the sampling frequency and the conversion
direction, i.e. £f2m|m2f Imonitor. It checks the correct format of the
input data, normalises the amplitude of the input sequence, assigns
the correct filter parameters for the specified conversion direction, and
controls the subband splitting and the correct call of the actual formant
and pitch scaling of the subbands using VGCSCALE. This subroutine is
called twice, once for the first three formants and once for the fourth and
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higher formants. When operated in monitor mode, the program saves
the filter parameters and frequency responses as well as the subbands for
later observation and delivers a diagnosis in form of frequency spectra of
the subband LPA frequency responses and residual spectra. The actual
scaling factors required for the specific conversion are loaded from an
external file, which gives the implementation great flexibility in terms

of testing options.

converted_signal = VGCSCALE(input,alpha formant,alpha pitch,Fs)
looks after the actual frequency manipulations required for the formant
and pitch shift. It firstly applies AOLA to the input signal and resamples
the result to achieve the requested formant scaling. Then the signal is
windowed in segments of approximately 25 ms duration. The segments
are LP analysed, and inverse filtered, and the residual is then time-
scaled using LPAOLA

[output] = AOLA(input,Fs,alpha) performs the AOLA TSM method on
the input, sampled at Fs, and achieves an overall scaling factor of al-
pha. This is the original implementation with added comments. In the
main loop, the signal is windowed into 25 ms frames, which are then
time-scale compressed or expanded by the subroutine OLA

[scaledsegment,alpha n] =0LA(input,alpha) performs the frame align-
ment and cross-fading of the segments

scaled_residual = LPAOLA(residual,segment,alpha) is an adapted version
of AOLA for the processing of LPA residuals. The frames are LP anal-
ysed and the residuals are then time-scale modified using the alignment
information contained in the original segment and the scaling factor
alpha

[scaledsegment,alphan] =LPOLA(residual,segment,alpha) is the corre-
sponding OLA implementation for the frame residuals and is called from

LPAQOLA. It looks after the correct alignment and cross-fading

3.4.3 Implementation Verification

In order to verify the implementation, the system was tested using a synthetic
test signal, which can be more easily observed and monitored during the
processing than a real-life speech signal with its permanently changing pitch
and formants, voiced and unvoiced segments. The test signal used for this
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purpose was synthesised using an artificially created spectral envelope with
four formants to simulate a typical male voice spectrum. The pitch and
the formant centre frequencies of the synthetic vowel were chosen close to
a real vowel “E” as in “bet” [Childers '91b]. The exact pitch and formant
frequencies of the synthetic test signal are specified in the table below.

Synthetic Sound Settings (Male Voice Spectrum) ]

| Pitch frequency in Hz | 120
| Formant F1 F2 F3 F4 |
Centre frequency in Hz | 500 J 1530 | 2500 | 3250

The differences of the optimal formant scaling factors for the lower and
upper frequency bands (Section 2.2.6) are very small. Therefore, it was de-
cided to test the implementation for correct function using slightly different
values, resulting in more distinctive frequency shift. This makes it easier to
observe the operations. The values chosen for the monitoring are given in the
table below.

| Male Scaling Factors for Monitoring
& Pitch & Formant Low | ¥ Formant High
Ll .6 1.2 1.3

For the verification, a number of tools were written in MATLAB; the most
important ones are listed below. Appendix B.2 contains the details of the
verification tools.

PROOF to generate the test signal, analyse it, perform VGC on it in monitor
mode and analyse the result of the conversion

ANALYSE (signal ,Fs) to evaluate and display the results of the deconvolution
tool

[A,residual] =DECONVOLVE(signal,N) todeconvolve a signal using an Nth-

order LP analysis, delivering the filter coefficients and the residual signal

For the visualisation, the signals were split into the spectral envelope and
the corresponding residual spectrum. This allows a very accurate measure-
ment of the actual pitch frequency and the centre frequencies of the formants.
Figure 3.13 shows the spectral envelopes and the spectra of the pitch com-
ponent of the test signal before and after VGC processing. The graphs show

that the implementation is well able to achieve the required frequency shifts
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Figure 3.13: Test of the VGC implementation using a synthetic test
signal; top: spectral envelopes of the synthetic vowel before (solid
line) and after VGC (dashed line); bottom: spectrum of the pitch
component before (solid line) and after (dashed line) VGC

in order to achieve voice-gender conversion. The readout of the results is
given in the table below, where the corresponding achieved accuracies are
also presented.

Measured Frequencies after Conversion
Feature Pitch F1 F2 F3 F4
Frequency in Hz | 193.9 603 1850 2975 4160
Deviation from Ideal Value in Percent i
LDeviation +1.0% [ +05% | +08% | -0.8% | -1.5%

This shows clearly that the target frequency ranges were met for the pitch
as well as for the formants. The accuracies in percent show that the small
difference between the upper and lower subbands can be met with the imple-
mentation as described above.

In Figure 3.14, the performance of the analysis filters is démonstrated

using the male synthetic vowel as specified above. The top diagram shows
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Figure 3.14: Test of the VGC analysis filter for formant separation;
top: spectrum of the original synthetic vowel; middle: low-pass fil-
tered signal containing the first three formants, the pitch and the
pitch harmonics; bottom: high-pass filtered signal with the fourth
formant and pitch harmonics

the spectrum of the original synthetic vowel. The diagram in the middle
displays the spectrum of the low-pass filtered signal. It can be clearly seen
that the pitch and its harmonics, together with the first three formants, are
isolated from the original signal. The diagram at the bottom shows the high-

pass filtered signal with pitch harmonics and the fourth formant.

3.4.4 Performance on Real Signals

The performance on a real speech signal is shown in the next figure in order
to demonstrate the effects of VGC in the spectral domain. Figure 3.15 shows
the spectrograms of the test sentence: “Fred can go, Susan can’t go and Linda
is uncertain” (Sheffield '99] before {top) and after (bottom) voice-gender con-
version. The original sentence was uttered by a woman and was converted to
a male voice gender. It can be clearly seen that the pitch harmonics and the

formants are lowered during the conversion process. This kind of diagram is
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Figure 3.15: Comparison of the spectrogram of the test sentence:
“Fred can go, Susan can’t go and Linda is uncertain” [Sheffield '99]
before (top) and after {bottom) voice-gender conversion from a female
to a male voice

too coarse to allow quantitative measurements of pitch and formant shifts,
but is useful to provide a visual impression of the effect of the frequency shifts
during the voice-gender conversion.

Further subjective listening tests to evaluate the sound quality of the
developed method were carried out; they are explained in Section 4.1.

3.4.5 Improvements to AOLA

During the adaptation of the AOLA algorithm for the use in the VGC system,
some improvements were applied to the AOLA implementation in MATLAB,
resulting in an increased efficiency of the AOLA implementation, and an
enhanced flexibility of AOLA due to automatic signal condition adaptation.
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3.4.5.1 Increased Speed Performance

In the examined AOLA implementation in MATLAB,the output vector con-
taining the converted signal is generated by initialising an empty output vec-
tor of zero length, and subsequently building up the output signal by ap-
pending the converted segments to the already generated output. Due to the
memory management MATLAB employs, this slows down the execution of the
program to a variable extent, depending on the overall length of the output
vector. To improve this situation, the output vector is fully initialised with
zeros, and an additional pointer is created to keep track of the current position
of the already generated output. The full output vector initialisation makes
sure that the required memory space is provided, which reduces the time-
consuming MATLAB memory management to a minimum. To quantify the
improvement a comparative test was carried out using three speech signals of
different durations; and both signals were scaled using 1.2 and 0.8 as scaling

factors. The details and results of this test are represented in Table 3.4.

r Signal

[ Signal Duration
Method

Signal [ | Signal II | Signal III
2915ms | 3236 ms | 3574 ms
TSM Factor I Required CPU Time

1359ms | 1531ms | 2141ms

—— !

1.2 F
141 ms 141 ms 188 ms

Ratio AOLA/AOLA+ 9.64 10.86 11.39

AOLA 812ms | 1031 ms | 1453 ms
0.8
AOLA+J 954ms | 1172ms | 1406 ms
| Ratio AOLA/AOLA+ | 085 | 0.8 1.03

Table 3.4: Comparison of the required processing time of the original
(AOLA) and the improved (AOLA+) MaTLAB AOLA implementa-
tion; the signals were sampled at 16kHz

It was found that the speed increase of around ten using the modified
AQLA for time-scale expansion is highly significant while for time-scale com-
pression the processing time increased slightly for short signals. For longer
signal durations the ratio of processing speeds increases for both modifica-
tion directions. The exact explanation for this phenomenon is not known
as it would require a detailed insight into MATLAB’S memory management.

However, during time-scale expaunsion, the required memory space increases
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with respect to the original signal duration while the memory requirements
become smaller for time-scale expansion. It can be assumed that the pointer
management for time-scale compression requires more processing time than
the memory allocation procedure.

As an outcome of this investigation the AOLA implementation was im-
proved in such a way that for both time-scale modification directions the new
method using full-length output vector initialisation and pointer management
was employed. This enhances the processing speed of AOLA for time-scale
expansion by a factor of around ten. This also results in a minor perfor-
mance loss for time-scale compression for short signals below approximately
3.5s duration at 16 kHz sampling rate. However, in the interest of a con-
sistant programming style, it was decided that this performance loss can be
tolerated.

3.4.5.2 Signal Range Adaptation

It was found during experiments with AOLA that the signal range of the input
vector had a great impact on the output quality. WAV sound data is stored
with a value range of + 1. If an input signal with that value range is processed
with AOLA, the output exhibits significant clipping of the amplitude and the
signal becomes unusable. It was found that when AQOLA is applied to signals
with an amplitude in a range of +2!° no clipping occurs. This value range
corresponds to an integer number representation requiring 2 Bytes, which is a
commonly used data format. Therefore, the AOLA preamble was expanded
with a signal scaling step in order to ensure that the output does not suffer
from clipping. To make the implementation more user-friendly, the output

signal is rescaled to its original range at the end of the program.

The previous implementation of AOLA simply used a fixed analysis frame
length. To enhance robustness, the analysis frame needed to capture at least
two cycles of the lowest occurring frequency component. This ensured the
proper performance of the peak alignment routine and led to a minimum
frame length of 23 ms when used on male voices (see Section 3.2.3). An im-
provement implemented was to automatically adapt the frame length accord-
ing to the sampling frequency of the signal. The sampling frequency is then
used in conjunction with a reference time length per frame to automatically
calculate the required framelength in samples. This actually allows AOLA
to adapt the framelength to a variety of sampling frequencies, thus ensuring
robustness for a large range of input signals. -
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3.5 Summary

In this chapter, a subband approach for a voice-gender conversion system
based on general time-scale modification was presented. The idea is to per-
form independent frequency-scaling for the pitch signal and non-linear frequency-
scaling on the formant frequencies. The non-linearity was approximated using
two linear frequency-scaling operations. The frequency-scaling is achieved us-
ing time-scale modification in conjunction with sample rate conversion. The
review of time-domain TSM methods showed that the adaptive over-lap and
add method is the most suitable for an efficient realisation of the voice-gender
converter as it offers the best combination of quality, computational perfor-
mance and robustness. The design of digital filters was summarised and the
use of FIR filters in the implementation of the system was explained, along
with the application of LPA for deconvolution. The implementation of the
system in MATLAB was described, as were objective tests using a synthetic
vowel to verify the correct function of the program. The spectrograms of a
real speech signal before and after voice-gender conversion was also presented
to graphically demonstrate the effect of the conversion on the signal spectra.
Finally, improvements to the AOLA implementation in MATLAB were ex-
plained, which led to a ten times higher processing speed of AOLA for time-
scale expansion while maintaining the range of performance for time-scale
compression. A minor modification allows AOLA to automatically adapt to

different signal amplitudes and sampling rates.
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Chapter 4
Experiments and Results

This chapter presents the experiments carried out to test the quality and
performance of the subband voice-gender converter. There are two aspects to
testing the voice-gender conversion system, namely the audio quality of the
algorithm and the computational performance of its implementation. The
different experiments carried out for the two test areas are explained in detail,
and the results are presented and discussed.

4.1 Listening Tests

In order to evaluate the quality of manipulation methods for audio signals,
subjective listening tests are still the most powerful and accurate means of
measurement. Objective, automatic testing is a very difficult task. A sum-
mary of automatic testing methods is given by Picovici. In this publication
[Picovici ’02] it is also pointed out that subjective listening tests are the better
choice for complex evaluation tasks. Therefore, the evaluation of the audio
quality of the VGC system was conducted by listening tests. The listeners’
panel consisted of 30 listeners, of which 13 were female and 17 male. The
details of the age and gender distribution of the test listeners are found in
Figure A.1 in Appendix A.1.2. The listening tests were divided into three
groups:

1. Evaluation of the best VGC scaling parameters (Section 4.1.1)
2. Test of the VGC quality with the evaluated parameters (Section 4.1.2.1)
3. Comparison of the conversion quality between the subband VGC and

the simple VGC (Section 4.1.3)
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The tests were carried out on a multimedia PC with a standard soundcard
and a Sennheiser HD 450 headset in a quiet room without background noise.
The listeners were asked to fill in an questionnaire, which is reproduced in
Appendix A.1.4.7 (Figures A.11 and A.12). The contestants could chose the
sound sample by clicking a symbol in a table in a multimedia document
(Figure A.10). The sound was then played and could be listened to via the
headphones. There was no strict time constraint put on the listeners, but
they were asked to follow their first impressions.

4.1.1 Scaling Factor Test

The first test was set to find the scaling factors for the subband VGC im-
plementation that achieve the best conversion results in terms of perceived
conversion quality. The voice-gender converter is controlled by three param-
eters, which are the three scaling factors for pitch ap, the lower formant
frequency band ay, and the higher formant frequency band o). In order to
confirm the calculated values, each value was used for the test with its cal-
culated value and a £10% tolerance, so that there were three possible values
for each of the three parameters. The tolerance value of +£10% was chosen
to accomodate the findings of Kuwabara [Kuwabara ’87] on the influence of
formant shifts on voice personality perception (details see Section 2.4) This
results in 27 different combinations of the three values, of which seven are

given as examples in the following matrix of scaling factor combinations:

Set 1 Set2 ... Setcal ... Set26  Set27
Qp_10% OCOP-10% -+ OPcat -.. OPL10% COP+10%
OF1-10% YF1-10% .- QFlcal .- %F4+10% QF1+10%
QXFh—10% (Fhcal .- XFhcal --- XFhcal QFh+10%

where ap., denotes the calculated pitch scaling factor, ap_jg% denotes the
calculated pitch scaling factor minus 10%, ap, 0% stands for the calculated
pitch scaling factor plus 10% and the indices F1 and Fh denote the scaling
factors for the lower formant band and the higher formant band respectively.
The matrix is a generic set of conversion-factor combinations, regardless of
the conversion direction. The male and female, i.e. M2F and F2M conversion

factors are reciprocal to each other, as described in Section 3.1.

The voice-gender conversion parameters were evaluated using a pure male
and a pure female vowel which were taken from the CD “The Squnds of the

IPA” [IPA ’95]. The sounds are excerpts from a continuous demonstrational
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sound file {track 9) covering all vowels of the English language, which were
isolated, downsampled to 16 000 Hz and saved in WAV format.

The original male vowel was the sustained vowel [g] and the female original
was the sustained vowel [e]. FEach sample was converted 27 times, using
all permutations of the three scaling factors and their tolerance values, as
represented in the matrix above. The listeners were asked to listen to the
27 male and the 27 female converted vowel samples and mark the first four
samples. In each rank, the listener was asked to judge also the perceived voice
gender and the naturalness of the sound on a scale from 1-5. This procedure
was performed for both sets of 27 samples, i.e. the F2M and the M2F group.

4.1,1.1 Results

The scores were accumulated in a spreadsheet (see Appendix A.1.4.6) and
weighted according to ranking and quality. Within each rank there were five
quality steps. In order to convert this two-dimensional structure into a scalar
the ranks were subdivided into five quality fields. Then each accumulated
value was weighted with a factor representing the position within the rank-
ing/quality fields. At the end the sum of the weighted values was taken as
a measure for the respective quality under observation, i.e. perceived voice
gender or naturalness. Each sound sample was assessed in this manner for
the aspects of perceived voice gender and naturalness. The following table
gives an example of the assessment procedure for the first two ranks of the
voice gender for samples 12 and 13:

Ranking Voice Gender
Rank/Quality 1 2 ... || Wghtd %
|Alpha | Sample || &t | 2 [ 3 Ja s 1[2[3]4[5 ... ] Sum | (870
Set 12 12 o Jo 1 JiJofoef2]rJoJof..J 35 64% |
Set 13 13 o | 2|2 [1]Jojrf2{r]ojolf..] 0 | 110% |
| Weighting Factors || 110 [ 105 [ 100 [ 95 Joo {85 [s0 {75 [70 | &5 ][ ... | | ]

The reference for the percentage (8700) is the maximum value that could be
achieved, i.e. the weighted sum if all listeners had chosen the highest ranking

of exactly the same sound samples.

Based on the sample of listeners further tests of this kind would lead to
a slightly different result, caused by statistical spread. However, this is not

indicated in the results and remains to be assessed.

The procedure described results in two series of values for each of the 27
samples in each category. The two series are not independent of each other

and therefore it was decided to represent the results in a 3 D-plot, where
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the x-y plane represents the naturalness in percent of the maximum possible

value and the x-z plane represents the perceived voice-gender quality, also in
percent of the maximum value.

Figure 4.1 shows the 3 D representation of the a listening test results. It
is given in four 3 D-graphs; the right-hand side is simply a different viewpoint
of the graphs given on the left-hand side. The upper curves represent the
F2M results and the lower ones the results of the M2F conversion.

F2M o Listening Test Results

%
E

Voice Gender in
e N & o ®

¢ B 15 T B o o2 om g
Sample No.

Voice Gender in %

hE] " 7 LE I 4] n -
Sample No.

Figure 4.1: Results of the scaling factor tests; top: F2M conversion,
bottom: M2F conversion; the right-hand side shows a different per-
spective of the plots given on the left-hand side

It can be clearly seen that the majority of the listeners judged the scaling
factors in the middle of the test field as best. Samples 10-18 for each range
were calculated using the pitch scaling factor of ap that was calculated in the
theoretical considerations in Section 2.2.6. Both the perceived voice gender
and the naturalness curves for F2M and M2F conversion have their maximum

at sample no. 14, which corresponds to the samples which were converted with
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the theoretically determined scaling factors, i.e.

A

FoM M2F

ap = 0.57 ap = 1.76
ap = 0.83 ap = 1.20
aFy = 0.85 apy = 1.18

The accumulation of high scores in both graphs for samples which were
converted using the pitch scaling factor ap leads to the conclusion that the
relevance of the correct pitch scaling is of major importance for the VGC
quality. The sound samples used for the subsequent listening tests were all

obtained using the scaling factors as evaluated in this experiment.

4.1.2 VGC Quality Test

For the VGC quality test, individual converted sound files were judged by
the test listeners with respect to the perceived voice gender, the naturalness
and the intelligibility of the sound. To evaluate the VGC performance under
different cdnditions, the subband voice-gender converter was applied to three
different signal qualities, which were as follows:

e A clean, undistorted version of each speech sample

¢ A bandwidth limited version of each speech sample in telephony quality
(i.e. 300-3400Hz)

¢ Each speech sample was also converted to the other voice gender and
then converted back to the original voice gender (back-to-back conver-
sion)

e Noisy versions (i.e. superimposed white noise) of each speech sample
with six different SNRs (20dB, 10dB, 6dB, 0dB, -3dB and -6dB) to
find the noise tolerance limit of the VGC algorithn

The clean samples were used to judge the overall performance of the VGC
under perfect signal conditions. The test with the bandwidth limited signals
is of interest for the application of the VGC for nuisance call determent. The
back-to-back performance is particularly important for the usage of the VGC
in a voice-gender normalisation system. Ideal voice-normalisation systems
would deliver a perfect reconstruction of the original signal after denormal-

isation. Finally, the VGC noise test gives useful information regarding the
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signal range to which the VGC can be applied, as ‘real-life’ sounds usually
contain some level of noise.

The speech data used for the tests originates from the TIMIT [DARPA]
database and details about the files are found in Appendix A.1.3. In all tests,
the listeners were asked to judge the perceived voice gender, the naturalness
and the intelligibility of the sample on a scale with five possible rankings.
The listening tests for the quality were arranged in five groups. Groups A-C
contained the clean, telephone quality and back-to-back converted samples
respectively with two sound tokens in each gender group. The first sample of
each gender group was also used to perform the tests for the noise margin. The
converted female sound samples were placed in Group D and the converted
male samples were arranged in Group E. A reproduction of the listening test
questionnaire is given in Appendix A.1.4.7.

4.1.2.1 Quality Test Results

Figure 4.2 shows the results of the voice-gender judgement for the clean sig-
nals, the telephone signals and the back-to-back signals for male and female
original voice gender. The graphs with the results for naturalness and intel-
ligibility are found in Figure A.3 in Appendix A.1.4.1.

VGC Quality Test: Voice Gender

100.0% - —
- p
90.0% - - 7
B 4
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-‘. ¥ '.'
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s ’I‘.' —t——F2M
60.0% -~ a A || MR
50.0% ‘\ . L/ -—¢-=Phone F2M

\t N y - —@—-Phone M2F
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surely fernale  maybe female not sure maybe male  surely male

Figure 4.2: Chart representing the results of the VGC voice-gender
listening test

Clean Signals The perceived voice gender was judged correctly at 83.4 %
for F2M and 90 % for the M2F conversion of clean signals. The naturalness
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for F2M was rated by 51.7% as ‘fairly natural’ and by 28.3% as ‘not very
natural’. For M2F 53.3% judged the sound as ‘fairly natural’, 23.3% as
‘almost natural’ and 5% as ‘completely natural’. The intelligibility was
very high for both conversions with a rate of 95% at ‘completely or almost
clear’.

The overall result for the VGC test under perfect signal conditions shows
that the F2M and M2F conversions are nearly similarly successful, with the
F2M conversion being slightly better with regard to the perceived voice gen-
der. The naturalness of both conversion directions was judged as ‘fairly nat-
ural’ by almost half of the test listeners. However, around one quarter of the
listeners judged the F2M naturalness to be not very natural, and about one
quarter rated the M2F as almost natural. The intelligibility was very high

with 95 % of the listeners having no problems understanding what was said.

Telephone Signals The telephone signals are bandlimited to 300-3400 Hz,
which basically means that the fourth formant is surely removed from the sig-
nal spectrum and the high frequency subband does not contain signal com-
ponents to be scaled.

The perceived voice gender was judged correctly by all listeners for the
F2M conversion, while the M2F direction was less successful, with less than
two-thirds rating the correct gender and about a third not being sure about
the voice gender. About half of the listeners thought the F2M conversion to
be ‘fairly natural’ and one quarter judged it to be ‘not very natural’. The
situation was almost exactly the opposite for the M2F direction.

Back-to-Back Signals The perceived voice gender was judged correctly
for both conversion directions. The naturalness of the F2M conversion was
significantly more successful than the M2F conversion. The intelligibility
was very clear for both conversion directions, with no listener having serious

difficulties understanding the test sentence.

4.1.2.2 Noise Test Results

The results of the noise tests are represented in Figures A.4-A.6 in Ap-
pendix A.1.4.2. The general impression of the converted noisy sound samples
is that at an SNRs 10dB and below, a whistling sound artefact is introduced
by the conversion, which quite significantly impairs the overall quality per-
ception. The loss of correct gender detection occurred on the transition from
an SNR of 6dB to 0dB for both F2M and M2F conversion.
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The majority of listeners found the naturalness affected severely by the
conversion process at all tested noise levels, with the highest ranking being
the M2F conversion which was rated ‘fairly natural’ by 40 % of the listeners
at an SNR of 20dB.

The intelligibility was seriously impaired at an SNR of 0dB and lower.
These observations hold for both male and female sound samples. Below
this SNR, the sounds were judged to be very difficult to understand or even
completely unintelligible. At an SNR of -3dB, the M2F sound was rated
‘completely abstruse’ by 76.7% of the listeners, while the F2M processed
sample was rated ‘very difficult’ at that SNR by 63.3% of listeners and only
‘completely abstruse’ by 76.7 % of all listeners at an SNR of -6 dB. This leads
to the conclusion that the F2M voice-gender conversion is more robust than
the M2F conversion direction.

In conclusion, it can be said that the tested VGC implementation is suit-
able for speech signals with an SNR not lower than 20 dB.

4.1.3 Comparative Test

In the last test of the series, the output sound quality of the simple and the
subband voice-gender converter were compared. The sound files used for this
comparison were the same as were used for the quality test of the original
simple VGC publication {Lawlor '99b] and they were the same as chosen for
the first quality listening test. Again, details are given in Appendix A.1.3.

For this test, the listeners were asked to listen to two sound files and judge
which of them sounded better. The small number of tested sound samples is
a result of the fact that only one converted sound sample per voice gender
was available from the simple VGC listening tests and demo files. The results
[Jung ’02a] are presented in Table A.6 in Appendix A.1.4.4 along with the
self-explanatory marking scheme. Figure 4.3 shows a bar graph with the
results.

For the female-to-male conversion, 47 % of the listeners judged the quality
of the subband VGC better than the simple VGC, while 43% of listeners
judged the sounds as equal in quality.

In the male-to-female conversion direction, 30 % of the listeners thought
the subband VGC to be better and 63 % said both methods were equal in
quality.

In the back-to-back conversion for female sound samples, 37 % judged the
subband VGC to be better and 57 % to be equal in quality compared to the
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VGC Comparison {1; Simple VGC, 2: Subband VGC)
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Figure 4.3: Bar graph representing the results of the comparative
listing test of the simple VGC and the subband VGC; 2 stands for
the samples of the subband VGC and 1 denotes the samples of the
simple VGC

simple VGC.

The back-to-back conversion test for male samples resulted in 23 % of the
listeners judging the subband VGC better and 67 % to be equal in quality to
the simple VGC.

It can therefore be stated that in the direct comparison of comparable
sound samples, the subband VGC represents a slight improvement over the
simple VGC, even though the majority of the listeners thought the quality of
the converted samples to be similar.

4.1.4 Computational Performance

The last test of the subband VGC deals with the computational performance
of the implementation. In general, there are two ways to realise a digital
system: as a software program on a processor or as a dedicated or programmed
hardware implementation. Chapter 5 investigates the differences between
software and hardware implementations and their specific requirements for
speed optimisation.

An important aspect of speech and general audio processing methods is the
load their implementation puts on the system on which they are running on.
In some systems, such as telephony, the processed signal requires a delay that

is below the perceptibility margin of the human ear. The signal processing
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that occurs in mobile phones is a situation where processing time is critical, as
too big a delay between input and output signal would significantly disturb
any conversation. In other systems, the processing delay may not be as
crucial, e.g. in a voice-recognition application in a security system.

In digital systems, there are two kinds of delay, the initialisation delay and
the processing delay. The crucial delay in any digital streamed data system
such as voice compression and transmission is the initial buffer loading delay
before the first internal computation steps can be performed. Secondly, the
time required by the actual process is important.

The test carried out was a straightforward comparison of the processing
time of the MATLAB implementaion of the subband VGC performed on three
sound samples of different duration on three different PC systems using In-
tel processors, namely a Pentium Pro 166 MHz, a Celeron 1200 MHz and a
Pentium 4 1800 MHz. The details of this test are listed in Table A.7 in Ap-
pendix A.1.4.5. The weighted processing time is the processing time scaled
relative to the clock speed of the Pentium 4 system to gain figures that allow
direct comparison. The results are presented in Figure 4.4.

Weighted Processing Times on different Systems
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Figure 4.4: Weighted processing times of three samples of different
duration (2315ms, 2960 ms and 3574 ms) on three different PC sys-
tems

It is remarkable that the weighted processing speed of the Pentium Pro
processor actually outperforms the other two systems, even though this type
of CPU was built in the second half of the 1990s and the EDO RAM used
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has an access time almost ten times 1onger. Its major strength was its large
amount of level 2 cache, which made it a lot faster than its competitors. Due
to the higher production costs, this CPU was never developed further than
for 200 MHz clock speed. In the direct comparison of the absolute processing
speed, the 1200 MHz Celeron processor outperforms the Pentium 4 with its
1800 MHz clock speed.

Table 4.1 summarises a different aspect of the computational performance
test, namely the processing overhead. This is the time difference between the
total processing time and the signal duration. For real-time performance,
the overhead must be close to zero or, even better, assume a negative value.
The latter means that the system can process the signal faster than real-time.
Considering the figures, it becomes apparent that even the fastest system, the
Pentium 4, is not able to run the MATLAB VGC implementation in real-time.

Processing Overhead in ms
] | Sample I | Sample II | Sample 111
Pentium 4 7576 8790 14910
Celeron 7499 8176 14442
Pentium Pro 65895 73170 118746

Table 4.1: Processing overheads in ms, i.e. the difference between
the required processing time on the tested systems and the sample
durations

The resulting processing time is not linearly related to the duration of
the sound samples. This is mainly due to the resampling procedure required
for the frequency shifts. The samples’ lengths and the scaling factors to be
applied to them determine the complexity of the resampling procedure, which
corresponds to the speed of execution. In the case where the resampling factor
ts the ratio of two small integer numbers, the resampling procedure can run
much faster than in a case where the resampling factor is the ratio of two
large integer numbers. Therefore, the actual CPU time required to perform
VGC on a given sound sample depends on its duration and sampling rate. If
long speech files are to be processed, the signal would have to be segmented
in such a way that the resulting segments can be resampled in an efficient
manner. This can be achieved by making the segment length dependent on
the scaling factors.
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4.2 Further Work:
Influence of Listening Habits

In the listening tests carried out and represented above, most of the test lis-
teners were native Hiberno-English speakers. Since the most common speech
databases (e.g. TIMIT and IPA) use American or British English, it was de-
cided to attempt another test using Hiberno-English speech tokens to deter-
mine whether or not the listening habits of the test persons had an influence
on the test results. Unfortunately, the availability of such speech samples is
currently very limited and creating a speech database is not a simple task as
not only studio equipment is required but also a phonetically balanced set of
test sentences among with trained speakers to record them. A small number
of Hiberno-English speech samples was courteously provided by the Depart-
ment of Languages & Cultural Studies of the National University of Ireland,
Limerick. Even though the tests performed did not point to any influence
of the test persons’ listening habits, the number of tests was too small to
make statistically representative statements. If in the future Hiberno-English
speech databases should become available, it is hoped to carry out listening

tests to quantify the influence of listening habits on subjective listening tests.
4.3 Summary

In this chapter the test of the subband VGC implementation was presented,
subdivided into finding the scaling factors giving the best perceived conversion
quality, and the evaluation of the VGC quality, intelligibility and naturalness
for clean speech signals, bandwidth limited speech signals and back-to-back
converted signals. Also tested was the performance of the VGC implementa-

tion on noisy signals using a varity of signal-to-noise ratios.

The scaling factor test confirmed the theoretically evaluated frequency
scaling factors for the pitch and the lower and upper formant frequency bands.
For clean signals, both conversion directions are similarly successful, with the
F2M conversion being slightly better. Almost half of the listeners judged
the naturalness as fairly natural or better. The intelligibility of the speech
was almost unaffected by the conversion process. For telephone signals, i.c.
signals with a bandwidth limitation of 300-3400 Hz, the VGC quality is fairly
high. The voice gender was judged correctly for the F2M conversion while
one-third of the contestants were not sure about the voice gender for the M2F
conversion. Since in most cases the desired conversion direction for nuisance

call determent would be F2M, this does not significantly reduce the possible
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use of the VGC system for such an application. Noise has a strong influence
on the VGC performance. If the speech signals are not too noisy, i.e. have
an SNR of 20dB or higher, the VGC system works reliably. Below an SNR
of 20dB, the naturalness and intelligibility suffer significantly, making it very
difficult to understand the speech contents.

The comparative test showed that the proposed subband VGC as a refine-
ment of the simple VGC was successful. Almost half of the listeners thought
the female-to-male conversion of the subband VGC sounded better than the
simple VGC. One-third of the listeners judged the male-to-female conversion
as better while two-thirds judged it as equal in quality. The improvement
was not as significant for the back-to-back conversion, which was already
quite successful for the simple VGC.

Also carried out was a computational performance test to evaluate the
speed of the implementation on three office PC systems with Intel proces-
sors, namely a Pentium Pro 166 MHz, a Celeron 1200 MHz and a Pentium 4
1800 MHz. This test showed that the MATLAB realisation used is not suitable
for real-time application, as the processing takes on average three times longer
than the duration of the processed speech token. A speech token of 2960 ms
duration actually required 9814 ms overall processing time on the fastest sys-
tern, which is 3.3 times slower than real-time performance. It is, however,
interesting to note that the weighted processing times, which take the differ-
ent processor clock speeds into account, are fairly similar, and that the oldest
of the compared CPUs, the Pentium Pro, outperforms the up-to-date CPUs
in this test.

The attempted listening test to quantify the influence of listening habits of
the partictpants on the test results remains for future work as the availablity of
Hiberno-English speech samples does not currently allow statistically relevant
listening tests.
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Chapter 5

Aspects of a VGN System

In this chapter, a voice-gender normalisation system is presented that makes
use of the improved voice-gender converter. As previously pointed out one of
the strongest possibie applications of a VGC systemn is in the area of VGN, for
example, in speech coding or speech recognition. The functionality of a VGN
system is given in a brief overview and then the most important sections are
explained in more detail. Finally, one functional element is explored in more

detail and the results of a hardware implementation are presented.

Some General Considerations

In principle, there are two ways of implementing a DSP methed, firstly as
software on a computer and secondly as specialised hardware. The software
implementation can be done using a PC and a high-level programming lan-
guage such as C or FORTRAN, or a mathematical programnming and simula-
tion environment such as MATLAB. The method can also be programmed to
run on a dedicated processor, such as the Analog Devices ADSP-21xx digital
signal processor family.

For the hardware implementation, there are two major procedures that
can be followed, that is a hardwired microchip or a FIELD Programmable
Gate Array (FPGA), which is a programmable chip on gate level. This means
that the functions are programmed not in a program that is executed but in
a gate structure at a lower and thus faster level.

Each of the listed methods has its specific advantages and disadvantages.
The PC solution offers great computational power, debugging and monitoring
tools and flexibility when changes must be made to the method. A PC, how-
ever, is usually stationary and too big for portable applications-like mobile

communications, for example. Signal processors are optimised for a variety of
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applications, such as speech or music processing. The program can be mod-
ified easily and the computational speed is very high. If, however, specialist
methods are required that are not supported, the system might become too
slow and a hardware solution might be more appropriate.

Hardware solutions are usually matched to the application. Dedicated
chips are very small, do exactly what is asked of them when they are custom-
made, and can be optimised for speed and energy consumption. Energy
consumption is a very important issue for mobile devices. They are, however,
inflexible and when their functionality has to be changed, a new microchip
must be produced. FPGAs are programmable chips and thus offer the speed
of dedicated microchips as well as the flexibility of a software implementation.
They are becoming more popular as they drastically reduce the cost and time
effort of the design cycle.

There is a basic difference between a software and a hardware implemen-
tation of an algorithm, i.e. in hardware implementations, processes can run
in parallel, provided an appropriate structure is available. On a single pro-
cessor system, all program steps are executed sequentially. This leads to very
different optimisation considerations. For a software program, it is essential
that its modules and subprograms run efficiently. Computational time could
be saved if program code is implemented more efficiently or is executed only
under certain conditions, thus saving processor time. So the basic improve-
ment is to use the processor less by using better algorithms or more efficient
programring.

This looks somewhat different for hardware realisations of algorithms.
Once a structure or module of a hardware implementation is realised, it can
be used without slowing down the overall performance, provided the module
can keep up the timing constraints due to communication with preceding or
following modules. A higher efficiency can be achieved by getting rid of a
whole module as such by either changing the algorithm’s implementation or
distributing the tasks to other modules. Using the module less does not in

general affect the efficiency.

5.1 System Outline

In a voice-gender normalisation system, it is intended to convert the voice
gender of the incoming speech signal to a normalised voice. This can be
either one of the two natural voice genders or an intergender voice. If the

male voice were to be the normalised voice, then a simple VGN system would
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convert all female speech samples to the male voice spectrum and leave male
voices unchanged. If the normal voice is an intergender voice, then both male
and female speech signals would have to be converted.

—~
Input Speech Signal Normalised
Voice- Speech Signal
Gender
Voice-Gender Detected Conversion Detected
Detection Voice Gender L Voice Gender

Figure 5.1: Block diagram of a voice-gender normalisation system
consisting of a voice-gender detector controlling the following voice-
gender converter

Figure 5.1 shows the principle block diagram of a voice-gender normal-
isation system. In the first step, the voice gender of the incoming speech
signal has to be analysed in order to determine the parameters for the fol-
lowing voice-gender conversion instance. The detected voice gender might be
required by a succeeding module in case a denormalisation has to be per-
formed, e.g. in a speech-compression application were the original voice has
to be restored. In the following, the modules are described and investigated
in more detail.

5.1.1 Voice-Gender Detection

The voice-gender information is required for the voice-gender converter to
determine the conversion direction in order to normalise the voice gender.
As a simplistic approach, the gender detector is based solely on the pitch
frequency of the incoming signal [Childers '91b]. If the pitch is below a certain
threshold, the voice is classified as male and if the pitch is above that value,
it is deemed female. When a new conversion process is started, the pitch
detector requires a certain delay before a safe pitch estimatc can be made.
This is due to the statistic distribution of voiced and unvoiced portions in
normal speech and due to the fact that only voiced speech actually contains
pitch information. Once the voice gender has been detected, it is not very
likely to change again for the incoming voice streamn and therefore it has to
be monitored only marginally.

Pitch detectors can be divided into three broad categories {Rabiner 76}:

1. time-domain methods that operate directly on the speech waveform,
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2. frequency-domain methods that use properties of the short term spec-
trum,

3. methods that use time-domain and frequency-domain properties.

Similar to the efficiency considerations of time-scale modification methods in
Section 3.2, time-domain pitch detection methods are computationally more
efficient while achieving sufficient accuracy.

Two very prominent and straightforward time-domain methods of pitch
estimation are the autocorrelation function and the Average Magnitude Dif-
ference Function (AM DF') [Ross '74]. The autocorrelation function of the
nth frame of signal z is calculated according to the following equation:

1

N
N Soaa(iy xza(i+g); 1<j< MAXLAG (5.1)

=1

ACORR,(j) =

The pitch period can be estimated from ACORR,, by detecting the first
secondary peak and measuring its distance from the first sample.

Quite siniilar in its basic structure is the AM DF function of x, which is

represented in the following equation:
1 N
AMDE,(j) = N Yo |zald) —za(i+5); 1< j < MAXLAG (5.2)
=1

The basic idea is to use a copy of the current frame and evaluate the sum of
the differences of the overlapping samples. This is done up to M AX LAG for
the N samples of every frame. The output of this procedure is a vector with
distinct minima where the offset is equal to the pitch period. The estimation
of the pitch period is then a matter of locating the first minimum of the
AM DF, vector. The major difference between autocorrelation and AMDF'is
that AM DF only requires additions/subtractions and sign operations, while
the autocorrelation needs multiplications as well as additions.

Figure 5.2 shows a comparison of the autocorrelation function and the
AM DF function calculated on the voiced speech frame displayed at the top
of the graphic. The autocorrelation and the AM D F function exhibit a similar
feature structure and both deliver the same result for the pitch period: 110
samples.

The suitability of an algorithm for real-time implementation corresponds
to the number and nature of basic mathematical operations. The most basic
and fastest algebraic operation is the addition of two numbers. Multiplica-

tions can be implemented as shift operations or as a series of additions. They
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Figure 5.2: Comparison of autocorrelation and AMDF'; top: wave-
form of a voiced speech segment; bottom-left: normalised autocorre-
lation calculated on the above speech segment; bottom-right: AMDF
of the same segment

are, however, more complex operations, require a larger area on a chip and
have a higher power consumption. Following this argument, the AMDF is
a better choice for faster computation. This holds especially for hardware
implementations, but is also of importance for software solutions.

5.1.1.1 Voiced/Unvoiced Decision

The voiced/unvoiced decision is required primarily to enable the pitch de-
tector. The output of the pitch detector is only valid when a pitch signal is
present, i.e. when the speech frame is voiced. Unvoiced frames have a noisy
signature and therefore the pitch detector cannot produce a reasonable out-
put. Further to controlling the pitch detector, the voiced/unvoiced decision
can also be used for a refinement of the time-scale modification algorithm of
the voice-gender conversion system. It has been shown [Kuwabara '97] that

the time-scale modification of speech signals is more naturalistic if unvoiced
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consonants are time-scaled at a different rate than voiced sounds, and plosives
are not time-scaled at all. This, however, is not the topic of this investigation
and therefore remains for further research.

There are three main methods to make a voiced /unvoiced decision for the
current frame:

1. the short term energy E,
2. the rate of zero-crossings Zero-X
3. the Max/Min ratio of the AMDF vector

The short term signal energy of each frame is defined as

E, =Y z(i)?

i=1

Since voiced frames have a periodic structure with a larger amplitude than
unvoiced frames, their energy content is significantly higher than for unvoiced
frames. A suitable threshold [Greenwood '01] for the voiced/unvoiced deci-
sion is given by:

EThreshotd = 0.25 % (max. Magnitudef x (No. of Samples)

If the measured energy of the current frame is above this threshold, then the
energy-based voiced/unvoiced decision is voiced.

The rate of zero-crossings is the number of sign changes of the samples
within the frame. Voiced, low-pitched signals change the sign less often
than high-pitched signals. Since unvoiced speech segments have a noisy non-
periodic signature, they contain high frequencies and therefore have a high
rate of zero-crossings. The zero-crossing threshold [Greenwood ’01] for the
voiced /unvoiced decision is given by:

Zero- X rhreshold = 26 crossings /20 ms frame.

If the zero-crossing value is below this threshold, the frame is considered
voiced. Zero-crossings can be easily detected by reading the sign bit of the
samples. This is particularly simple to implement in hardware solutions.

As a third measure, the Max/Min ratio of the AMDF vector can be
used. This value compares the maximum and minimum value of each AMDF
vector. For voiced segments, the ratio is higher due to the lower troughs in

the graph.
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In order to gain more certainty in the voiced/unvoiced decision, the first
two methods are combined. A frame is only considered voiced if both the
energy decision and the zero-crossing decision are voiced, otherwise the frame
is classified unvoiced. Since the AM DF Max/Min ratio is only available after
a pitch detection, it can only serve as an additional feature to either confirm
or reject the decision made by the other two methods.

5.1.1.2 Voice-Gender Decision

In the suggested system, the voice-gender decision relies solely on the pitch
information. For a hardware implementation this is certainly the easiest and
most effective method. It has been suggested [Manfredi *02] the use of formant
structure, bandwidth and energy to increase the reliability of the voice-gender
detection. The linear predictor coefficients of the voice-gender converter could
be used to estimate the formant frequencies of the current frame and thus
provide another source of data to enhance the accuracy of the voice-gender
detector. However, while the mathematical operations required for the LP
coefficient analysis are fairly easy to implement in a software program, they
do exceed the possibilities available in a simple hardware implementation as
it is suggested here.

5.1.2 Detailed System Outline

_ Normalised

Input Speech Signal Speech Signal

| Voiced/Unvoiced Decision ! in out

\ ! AMDF male/ Signal

: Energy ' Pitch Detection | female ;
Lvlq Measurement LL \ & Voice-Gender | 1™/ Voice-

E > Ethresho ! Decision

! - P S Gender

]

| I
L‘,T Zero J : _yAMOF | Converter

; CrOSSIng : AMDF unvoiced /__
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T oo ' unvoiced L—_ L—

Figure 5.3: Detailed block diagram of the voice-gender normalisation
system

In Figure 5.3, the details of the voice-gender normalisation system as de-

scribed above are outlined. The voiced/unvoiced decision with the energy and
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Figure 5.4: Schematic diagram of the AMDF pitch detector

zero-crossing entities forms the major preprocessing block, which enables the
AMDF pitch detector. The output of the Max/Min decision is used to con-
firm or discard the first voiced /uuvoiced decision. The final voiced/unvoiced
decision is passed on to the voice-gender converter. Here it could be used
to implement an improvement and only apply LPA on voiced segments and
directly scale silent or unvoiced frames without LPA and deconvolution. The
voice-gender decision is passed from the AMDF block to the voice-gender
converter in order to determine the conversion direction. For systems which
require reconversion to the original voice gender, this information has to be
passed on to following instances. Furthermore, both the normalising and de-
normalising systems have to be matched with regard to the formant bands
and corner frequencies or this information has to be transmitted as well. The
same holds for the scaling factors for the VGC subsystem, especially when an
intergender voice is chosen as the normalised voice.

5.2 AMDF Realisation

This section briefly presents aspects of an implementation of the AM D F pitch
detector. The effort necessary to implement the AMDF function is directly
related to the sampling rate. For an 8 kHz signal, a 20 ms frame contains
160 samples, while for a 16 kHz signal, 320 samples have to be taken into

account. Since the processing speed is related to the number of samples that
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have to be processed, it is apparent that the processing speed in a 16 kHz
system has to be twice as high as for an 8kHz system. As pointed out
earlier, the pitch detection can only produce useful results for voiced segments.
Therefore, the AM DF is controlled by an enable signal which is provided by
a voiced/unvoiced decision unit. Figure 5.4 shows the full block diagram
for the AM DF subsystem [Jung '02b]. The diagram describes the AMDF
functionality in a way that is suitable for hardware implementation in, for
instance, VHDL (VLSI Hardware Description Language, VLSI stands for
Very Large Scale Integration).

The realisation of the AMDF function as described in Figure 5.4 was
carried out using VHDL for the hardware structures [Smith '02], and the
system was designed to work ou signed 8bit data sampled at 8kHz with
a clock speed of 86 MHz. The successful simulations showed that in order
for the structure to function in real-time, the AMDF calculations had to
be conducted in a quadruple parallel structure. For an application to 16kHz
signals, this would actually have to be doubled again. The initial input buffer
delay is 20 ms, i.e. exactly one input frame.

5.3 Summary

This chapter presented the outline of a voice-gender normalisation system
as an application for the voice-gender converter. The essential functional
units for voice-gender normalisation are a means of voice-gender detection
to control the conversion direction, and the actual voice gender converter.
For voice-gender detection autocorrelation and AM DF were introduced and
compared for computational efficiency, and it was found that AMDF per-
formed as well as the autocorrelation at a lower computaional cost. The
voiced/unvoiced decision method was explained in detail with the means of
AMDF, energy and zero-crossings measurements to improve the reliability.
Finally, the AMDF pitch detection and voiced/unvoiced decision module was
presented in more detail, along with simulation results. The pitch detector
as seen in Figure 5.4 currently requires four times longer for the processing
than the signal duration, i.e. it is four times slower than real-time. By using
parallel processing units real-time performance can be achieved. The realisa-
tion in VHDL was done with focus on low energy consumption at a high-level
design state. This means that the energy consumption was simulated and
optimised by comparing different solutions for each module and selecting the

solutions with the highest energy efficiency.
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Chapter 6
Conclusions and Future Work

This thesis has presented an improved voice-gender conversion system using
subband frequency scaling. An overview of voice-conversion methods and pos-
sible applications of voice conversion and voice-gender conversion was given.
The human speech production mechanism was explained, and voice features
and their contribution to voice-gender differences were elaborated. It was
found that the ratios of female and male formant frequencies are similar for
the first three formants but that the fourth formant has a slightly differ-
ent ratio. The source-filter model of speech production was introduced and
the application of linear predictive analysis to speech analysis was explained.
Recent research on voice conversion was reviewed and based on this review
an improved method of voice-gender conversion using time-scale modification
was developed and outlined.

The proposed method applies frequency shifting independently to the
pitch and the formant spectrum of the speech signal in order to convert the
voice-gender features. The novelty was the use of subbands for the formant
spectrum in order to linearise the relationship of male and female formant fre-
quencies. The review of time-domain TSM methods showed that the AOLA
algorithm was the most suitable candidate for an eflicient high-quality realisa-
tion of the VGC method. Digital filter design and its application in the VGC
system was explained. The implementation of the system using MATLAB was
described and the correct function of the implementation was shown using an
artificially generated vowel. During the progress of the system implementa-
tion, improvements to the AOLA implementation in MATLAB were achieved.
This led to a ten times higher processing speed of AOLA for time-scale expan-
sion while maintaining the range of performance for time-scale compression.
A minor modification allows AOLA to automatically adapt to different signal
amplitudes and sampling rates, thus making AOLA more flexible.
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Extensive listening tests were carried out to test a variety of VGC features.
The scaling factor test confirmed the theoretically evaluated frequency-scaling
factors for the pitch and the lower and upper formant frequency bands. Both
VGC conversion directions are similarly successful, with the F2M conver-
sion having a slight advantage over M2F transformation. The naturalness
of converted speech is affected, as judged by half of the test listeners. The
intelligibility does not suffer as a result of the conversion process. For tele-
phone bandlimited signals, the VGC quality is fairly high. The perceived
voice gender was judged correctly for the F2M conversion while one-third of
the contestants were not sure about the voice gender for the M2F conversion.
This does not significantly reduce the possible use of the VGC system for
nuisance call determent as the desired conversion direction is F2M in most

cases.

The VGC system is very sensitive to noise. Below an SNR of 20dB the
naturalness and im.;elligibility drop significantly, making it very difficult to un-
derstand the speech contents. The comparative test showed that the proposed
subband VGC as a refinement of the simple VGC was successful. Almost half
of the listeners thought the female-to-male conversion of the subband VGC
sounded better than the simple VGC. One-third of the listeners judged the
male-to-female conversion as better while two-thirds judged it as equal in
quality. The improvement was not as significant for the back-to-back con-
version, but the VGC was also highly successful in this category. The com-
putational performance test was carried out on three commonly used PC
systems using the Intel processors Pentium Pro 166 MHz, Celeron 1200 MHz
and Pentium 4 1800 MHz. It showed that the MATLAB implementation of the
VGC system is in its current form unsuitable for real-time applications. It
was found that the tested systems had very similar speeds when the different
clock rates were taken into account as weighting factors.

Finally, a possible realisation of a voice-gender normalisation system was
outlined and the real-time, low-energy hardware implementation of a signifi-
cant part of this system, the AMDF pitch detector for autownatic voice-gender
detection, was presented.

Recommendations for Future Work

Through the progress of the research, a number of aspects and ideas emerged
that exceeded the scope of this work. Some of them are, however, of signifi-

cance for further research or in an application of the VGC system.
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The modelling of the speech production in this work was focused on vocal-
tract properties and formant shifting. It would be desirable to also investigate
a more detailed model of the glottal excitation and evaluate its contribution

to the quality of the voice-gender converter.

The simple VGC has successfully been integrated for voice-gender normal-
isation in a GSM transcoder [Humphreys '02]. It is desirable to investigate
the performance effects when the VGC system is used in conjunction with
speech-recognition systems. Furthermore, it would be interesting to evalu-
ate and quantify a possible gain in system performance when male voices
are transformed to an intergender voice spectrum when the VGC is used for
voice-gender normalisation.

In order to make the developed VGC system more attractive for use in in-
dustrial or consumer applications, it would be desirable to develop a real-time
implementation of the presented VGC method in a fast high-level language
such as ANSI-C. ANSI-C programs have the great advantage that they can
be compiled on a large number of platforms and systems, including LINUX
and UNIX. Most digital signal processor development kits also include a C
compiler, so C programs can be easily ported to run on DSP processors. As
only the AMDF pitch detector has been realised in hardware so far, it would

be interesting to implement further modules of the outlined system.

Finally, the attempted listening test to quantify the influence of listening
habits of the participants on the test results could not be carried out satisfac-
torily due to the limited availability of Hiberno-English speech samples. This
test therefore remains for future work when Hiberno-English speech databases
become available.
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Appendix A

Listening Tests and Phonetics

In this appendix, the listening test details are firstly given, including the test
structure, test samples that were used, the age-gender distribution of the
test listeners and the results of all tests including the evaluation sheets and
listening test forms. Secondly, an introduction to the phonetics of vowels is
given and a brief overview of the functionality of the human auditory system

is presented.

A.1 Summary of all Test Details

Firstly, the structure of all listening tests conducted is presented, the age-
gender distribution of the test listeners is listed in form of tables and a graph,
and finally the source and contents of the sound files that were used for the

VGC quality listening tests are given.

A.1.1 General Listening Test Overview

Ideal Scaling Factors |
QPitchy XFormantlow; ¥Formant high L54 Sa'mpleSJ
General Listening Tests
L M2F & F2M Conversion 4 Samples
| Back-to-back Conversion 4 Samples
Telephone Quality Signals 4 Samples |
L Noisy Signals (6 different SNRs) 12 Samples |
Comparative Listening Tests
Comparison of Simple and Subband VGC Tests | 4 Samples |

Table A.1: Overview of the listening tests carried out
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The general structure of the listening tests carried out is represented in Ta-
ble A.1 listing the features that were tested and the number of samples used
for each test.

A.1.2 Age-Gender Distribution

Simple VGC Subband VGC

[ Age/Gender | Male [ Female | | Age/Gender | Male | Female |
0-10 3 1 | 010 - = ]
11-20 1 - 11-20 6 5
21-30 9 1 2130 1 3
31-40 3 2 31-40 2 4
41-50 1 2 41-50 3 1

50+ 1 1 50+ 2 =

| =31 | 13 13 | | =30 [ 17 | 13 |

Table A.2: Age and gender distribution of the test listeners; left-hand
side: distribution of the tests for the simple VGC; right-hand side:
distribution of the subband VGC listening tests (all individuals were
native English speakers from Ireland)

Table A.2 gives the age and gender distribution of the test listeners. The chart
for the listening tests done by Lawlor [Lawlor '00] on the simple VGC is given
on the left-hand side of the table, while the right-hand side represents the
listeners’ age-gender distribution in the listening tests for the subband VGC
algorithm. The total number of subjects differs by only one person, and the
age group in the subband VGC test is balanced mainly in the range of 11-50
years, while in the original tests children up to the age of 10 years participated.
The age-gender chart is also represented graphically in Figure A.1.

A.1.3 Listening Test Sound Files

The sound samples for all listening tests originate from the TIMIT database,
dialect region 1. The filenames and test sentences for the main listening tests
are listed in Table A.3.

A.1.4 Listening Test Results

The listening test results are mainly presented graphically; a small number
of tables containing results are also given. Reproductions of the original

evaluation spread sheets are printed at the end of the section.
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Age-Gender Distributions of the Listening Tests
10 - — -

9

8 I

7 P

6

5 L

4 H

3 N K

2 1 HE

15 R

04 HEE BiE G 5

0-10 | 112 21-30 | 31-40

[D Male Simple VGC 3 1 9 3 1 1
M Female Simple VGC 1 0 4 2 2 4
[ Male Subband VGC 0 6 4 2 3 2
8 Female Subband VGC 0 5 3 4 1 0

Figure A.1: Bar graph representing the age-gender distribution of the
VGC listening test as represented in Table A.2

Quality Test Sound Samples
1. Female: timit/test/dri/faks0/sa2.wav

Sentence:  “Don’t ask me to carry an oily rag like that”

2. Female: timit/test/drl/fjem0/sx4.wav

Sentence:  “Jane may earn more money by working hard”

1. Male: timit/test/dr1/mdab0/sa2.wav

Sentence:  “Don’t ask me to carry an oily rag like that”

2. Male: timit/test/drl/mjsw0/sx380.wav

Sentence:  “Why charge money for such garbage”
Comparative Test Sound Samples

Female: timit/test/dril/felc0/sal.wav

Male: timit/test/dr1l/mdab0/sal.wav

Sentence:  “She had your dark suit in greasy washwater all year”

Table A.3: Source and contents of the sound files used for the VGC
quality listening tests
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Al141 VGC Quality

The following charts sum up the VGC quality test results.

VGC Quality Test: Voice Gender

100.0% —
0 <>
90.0% : — 7!
'.. i
80.0% s . !
‘_\ ’i ;. “r
70.0% =
fr‘: —a— F2ZM
60.0% - : -
:y " —a— NM2F
S0 \ 3 I ~—0-- Phone F2M \
. (]

\ .. l}/ -~ —- Phone M2F
40.0% S ohL P . e BamE
\< "’.\ / l

30.0% o > £l - B-2-BM

20.0%

10.0%

0.0% - ¥
surely female maybe female not sure maybe male  surely male

Figure A.2: Chart representing the results of the VGC voice-gender
listening test
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-
VGC Quality Test: Naturalness
80.0% - 5y
0 H
70.0% o —
60.0% - & :
. P L ——Fm
50.0% jﬂ\‘ AR | | —h— MOF
. s 1
K N A - -¢ - - Phon
40.0% - ~ N B e F2M
. / AN ) | |-—# -~ Phone M2F
". / & rd \ ~ \\ |
30.0% 7 ” > x — o 8e-B2BF
Zﬁ// o \ N \C'm {|--®---B2BM
! ’ N \ i
20.0% 1 e —— 2 .
P ) |
10.0% - o 1
O, |
0.0% —
completely  almost natural  fairly natural  not very natural  completely
L natural unnatural
VGC Quality Test: Intelligibility
100.0% 71— - _T
90.0% 4 ——1
80.0% "
) -
70.0% F2M
60.0% 1 | —a— MO
60.0% —~-¢-~Phane F2M
——& - - Phone M2F
40.0% cf3---B-2-BF
30.0% - B2BM
20.0% +
10.0% }
| 0.0% 4
completely  almost clear difficult very difficul completely
clear abstruse J
—

Figure A.3: Charts representing the results of the VGC naturalness
(top) and intelligibility (bottom) listening tests
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A.1.4.2 VGC Noise Test

The charts on the following pages represent the results of the VGC noise tests
carried out with respect to perceived voice gender, naturalness of voice and
intelligibility.
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VGC Noise Test (F2M): Voice Gender

not sure
female female maybe

surel
maie urely

male

VGC Noise Test (M2F): Voice Ge nder

SNR

Figure A.4: Charts representing the results of the VGC noise test
on F2M conversion (top) and M2F conversion (bottom), aspect voice
gender
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VGC Nolse Test (F2M): Naturainess ‘I

_

Figure A.5: Charts representing the results of the VGC noise test on
F2M conversion (top) and M2F conversion (bottom), aspect natural-
ness
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T
r VGC Noise Test (F2ZM): Intelligibility

Figure A.6: Charts representing the results of the VGC noise test on
F2M conversion {top) and M2F conversion (bottom), aspect intelligi-
bility
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A.1.4.3 Original Simple VGC Listening Test Results

The Speech Sample sounds . ..

Male Male Neither Female | Female
natural | unnatural unnatural | natural
o .

Female-to-Male Conversion
17% 72% 4% 7% 0%
Male-to-Female Conversion
0% 0% 14% $29% f 4%
—
Female-to-Male-to-Female Conversion
0% 0% 0% 1 3% J 7%
Male-to-Female-to-Male Conversion
41% rsg% 0% { 0% J 0%

Table A.4: Results of the simple VGC listening tests with a single
formant scaling factor [Lawlor *99b]

The original listening test [Lawlor *99b] consisted of one speech sample per
gender. The tested features were perceived voice gender and naturalness
for a female-to-male and a male-to-female conversion and two back-to-back
conversions for each sample.

The results of the listening tests of the simple VGC [Lawlor '99bj with
single formant scaling are given in Table A.4 and Figure A.7. The test con-
sisted of one speech sample per gender. The tested features were gender and
naturalness for a female-to-male conversion, a male-to-female conversion and
a back-to-back conversion for each sample. The used files for the tests are
identical with the two samples used in the comparative VGC test presented
in the next section. The original test did not investigate the system perfor-
mance with noisy or bandlimited signals. Therefore, the results can only be
compared for voice-gender quality in this test.

Lawlor [Lawlor ’00] concludes that the female-to-male conversion was more
successful than the male-to-female conversion, while the back-to-back perfor-
mance is good for female speech samples and average for male speech samples.
The original test did not investigate the system performance with noisy or
bandlimited signals.
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Listening Test Results Simple VGC

100% —
90%
80"/0 5 O Female to Male
70; Conversion
60°/: W Male to Female
509% Conversion
a
40% OFemale to Male to
30% Female Conversion
20% 8 Male to Female to Male
10% Conversion
0%
\60

Figure A.7: Bar graph representing the listening test results of the
simple VGC [Lawlor '99b] as presented in Table A.4

A.1.4.4 VGC Comparative Listening Test Results

For this test, the listeners were asked to compare two sound files, one for each
voice gender, and judge which of them sounded better. The marking scheme
is self-explanatory and is given together with the results in Table A.6. In each
comparison, one sound file originated from the simple VGC test as presented
by Lawlor [Lawlor '99b] (full results in Figure A.7) and the sound sample to
which it was to be compared was generated using the clean original source file
processed with the subband VGC [Jung '02a]. The results in Table A.6 are
based on additional listening tests that were performed to refine the results
presented by Jung [Jung '02a).
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( The Speech Sample sounds . ..

Better ' Equal Worse
...than the Reference
B Female-to-Male Conversion |
4% | 50% 3%

Male-to-Female Conversion

23% [ 70% J %

Female-to-Male-to-Female Conversion

37% j 6% | 0%

Male-to-Female-to-Male Conversion

|
20% T73% %

Table A.5: Results of the com-
parative VGC listening test;
the results of the simple VGC
were compared with the re-
sults of the subband VGC
[Jung '02a]

The Speech Sample sounds . .. ‘
Much Better | Better ( Equal ‘ Worse 'Much Worse
...than the Reference
Female-to-Male Conversion

7% % | 4% ] 3% 0%
. Male-to-Female Conversion

3% { 30% } 63% 3% % |

Female-to-Male-to-Female Conversion

L

% 37% 57% 0% ( 0%
\_— Male-to-Female-to-Male Conversion
\ 3% 23% 67% % 0%

Table A.6: Results of the comparative VGC listening test; the results
of the simple VGC were compared with the results of the subband

VGC [Jung '02a)
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| System under Test I 1 11 | 11 |
Processor Pentium 4 Celeron FPentium Pro
Clock Speed 1.8GHz 1.2GHz 166 MHz

| RAM Size 512MB 256 MB 96 MB
RAM Type SDRAM, PC133 | SDRAM, PC133 EDO

| RAM Access/Cycle Time 7.5D8 8ns 60ns
Operating System Windows 2000 Windows 2000 | Windows 98
Duration of Test Sample 1 2315ms
Required Processing Time 9891 ms 9814 ms 68 210 ms

—Weighted Processing Time 9891 ms 6 543 ms 6290 ms
Processing Time Overhead 7576 ms 7499 ms 64 636 ms

. Duration of Test Sample Il 2960 ms
Required Processing Time 11750 ms 11136 ms 76130 ms
Weighted Processing Time 11 750 ms 7424 ms 7021 ms

| Processing Time Overhead 8 790 ms 7176 ms 72 586 ms
Duration of Test Sample 111 3574 ms
Required Processing Time 18 484 ms 18016 ms 122320 ms

| Weighted Processing Time 18484 ms 12011 ms 11281 ms

| Processing Time Overhead 14910 ms 14 442 ms 118746 ms

Table A.7: Computational performance test details and results; all
tests were run on MATLAB Version 5.3

A.1.4.5 Computational Performance Test

The overall processing time is relatively easy to measure by simply starting a
timer at the beginning of the process and stopping it after process termina-
tion. However, since the CPU is shared between several processes, running a
simple timer actually measures the CPU time used by other processes as well.
Therefore, the MATLAB command cputime was used, which allows the mea-
surement of the actual CPU time dedicated to the specific MATLAB process
currently executed. The measured CPU time includes both of the process
delay times, the initialisation delay and the processing delay of the imple-
mentation. This test was carried out for three speech samples with different
durations. The results are listed in Table A.7 below.

The processing overhead is the required CPU time — signal duration,
which refers to the amount of time by which real-time performance was
missed.
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A.1.4.6 Evaluation Sheets

On the following pages, the evaluation sheets for the optimal scaling factor
tests and the VGC quality tests are printed.
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Figure A.8: Evaluation sheet for the optimal scaling factor test
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Figure A.9: Evaluation sheet for the VGC quality test
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A.1.4.7 Questionnaire
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Part I

Group Alpha: Samples 1-27

123,45 ,6|7]|8

10|17 |12|13)14

15

16 ) 17

19 20|21 (22|23 inBi 26 | 2

el
| 0| @

Test Form: Playback Sound Samples

To listen to a sound click on the corresponding field in the tables below.

Group Alpha: Samples 27-54

T
28 29| 30 BI 32|33

371383940 (41|42

34135

13 14

e

‘46 47 | 48 | 49 50J51

92 | 33

Part 1T
Comparison Set 1

Comparison Set 2

36 l
45
54

1 2 —]
Cowmparison Set 3
5 6 J
Part III
Group A

LI 2 3

KN

Group B

EEENENEN

Group D

]
DD DEIEIK

I
Comparison Set 4
[
Group B
[ I J 2 1
Group E
\J 2 3 4 5 6

Thank you very much for your time and your participation in the test

Figure A.10: Listening test multimedia document layout
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Anonymous Listening Test Form

Firstly please state your gender and age groap:

Gender

0-10 { 11-20 | 21--30 | 31-40 | 41-50 | 50+

For the test please use the mualtimedia document provided on the computer in from of yon. Click
on the mumbers in the boxes and listen to the sound tHat will be played thenm. Take your time with
the test and listen to the samples again if yoo wish to do so. Remember that the Brst impression is
importamt. The test consists of three parts, in each part the specific task is explained.

Part I

The Erst part of the listeming test consists of two
sets of 27 speech samples each. The task is to
find the fowr samples you feel somd best with re-
spect to voiee gender. Write down the sample
numbers in the tables below and emter them in
the ranking sectiou you feel they belong to. Then
alBo judge the naturalness of the four samples
you have chosen for the Rrst part by ticking the
appropriate lime.

Group Alpha: Samples 1-27

Voice Gender
Quality/Rank T, 7. 3. 1,
surely femnale
maybe female
not gure
maybe male
| surely male

|
n

Naturalness 1
Quality /Rank 1. 2. 3. 4,
completely natural .

almost natural

fairly natural

nol very natural

| completely unnatural

Group Alpha: Samples 28-54
Voice Gender

Comparison

Samples 1 and 2
i»7 [ 1>2 1 1=2 | 1< | 1«2
i [ 1 1

Samples 3 and 4

14 [ 354 | 3=a [ 3<4 | 3&7%
| { \
Samples 5 and 8

556 | 5=8 | 5<8 | G«é

Y|
{

Samples 7 and 8
T»8 | 7158 [ T=8 [ 7<8 T8
1 i 1 1

L

Part I1I

In the third part there are three aspects to be
judged in Eve differemt groups of sounds. Please
judge the voice gender, the naturalness and
the intelligibility of the four sound samples in
groups A-C by tickipg the appropriate boxes in
the tables below.

For groups D & E please listen to all six soand
files and mark them in the same marmer as the
samples in groops A-C.

Qualily/Fark T T 3. i Group A
ly femal . -
:::;f:e :emi:e Voice Gender
oL sure surely may be not muybe surely
meybe male Sample | fernale female Fure male male
surely male ;
Naturalness 3
Cuality /Rank T z. 3. T 4
completely natural Naturalness
almost najural completely [ almost | fairly [not very [completely
fairly natural s ! ] | natural | natural | natural | unnatural
not very natural 1
completely unnatural 2
3
F]
Part II Intelligibility
- - : - completely [ almcet very |completely
In the second part of the test»please hsf.en to the Sample | clear lear | Gifficult | @Mt | abstruse
sound samples and compare them. » & <« mean 1
muach better, > & < better and = means the ;
samples have equal quality. —

Figure A.11: Listening test questionnaire, first page
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Group B Group C
Voice Gender Voice Gender
surely maybe not maybe surely surely maybe not maybe surely
Sample | female female sure male male Sample | female female sure male male
1 1
2 2
3 3
4 | 4 -
Naturalness Naturalness
completely | almost | fairly |not very [ completely completely | almost [ fairly not very | completely
Sample | natural | natural | natursl | natural | unnatural Sample ! natuzal | natural | natural | netural | unnatoral
1 1
2 2
3 3
[] 4
Intelligibility Intelligibility
compleiely | almost vesy |completely completely | almost very | completely
Sample]  clear clear | difficult | difficult | abstruse HSample clear clear | difficult | difficult | absiruse
1 1
2 2
3 3
1 4
Group D Group E
Voice Gender J Voice Gender
surely maybe not maybe surely aurely maybe not mayhbe surely
Sample | fernale female | aure male male Sample | female female sure male male
1 1
2 2
3 3
4§ 4
5 [
[] 6
Naturalness Naturalness
completely [ almost | fairly | not very | completely completely | almost | fwirly |not very | completely
Sample | natural | natural | natural | natuenl | unnatyral Sample | natural | natural | natura) | naiursl | unnatural
1 1
2 2
3 3
3 \ [
5 | 5
[ — 6
Intelligibility | Intelligibility
completely | almost very | completely completely | almost very | completely
Sample clear clear | difficult | difficult | abstruse Sample clear clear | difficuli | difficult | aBatruse
1 1
2 2
3 3
4 [
5 5
[] 6

Thank you very mach for your time and yomr participation inm the test

Figure A.12: Listening test questionnaire, second page
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A.2 Overview of Vowels and Human Sound

Perception

This section firstly intends to give a brief overview of phonetics, limited to the
vowel sounds and the location of their modulation. Secondly, the frequency
response of the human ear is presented, in order to give an impression of
the range of sensitivy of the human sound perception as well as to show the

frequency and dynamic range of certain sound sources.

A.2.1 Positions of Vowel Modulation

Front Central Back
Close 1 y—:‘r H ——— We U
O
Ciose-Mid Seo X o0
o
Open-Mid e ——- 3\8 —A®D

Open a (EA—OJ D

Figure A.13: Position of the vowels [Ladefoged '01)

Figure A.13 shows the position of the vowels in the notation of the inter-
national phonetic alphabet [Ladefoged '01). The terms ‘front’, ‘central’ and
‘back’ denote the physcial position inside the mouth cavity/on the tongue
where the sound is actually modulated. The terms ‘close’, ‘open-mid’ and
‘open’ denote the position of the lips, i.e. how open the mouth is during the
phonation process.

A.2.2 Human Sound Perception

The human auditory system is based on the perception of frequencies rather
than the detection of the waveform in the time domain [Zwicker '91].

The sensitivity of the human auditory system is highly develaped for fre-

quency resolution, while the phase sensitivity is not strongly developed.
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140 L L L L R T L$ LI

—
]
=]
‘

’

3

Sound pressure level, SPL (dB)
8

40

20

0

£ o i I | I A [

0.02 005 0.1 0.2 0.5 1 2 5 10 20
Frequency (kHz)

Figure A.14: The frequency response of the human ear [Zwicker '91]

Figure A.14 shows the frequency response of the human ear [Zwicker '91].
The unit of the logarithmic frequency-axis is kilo-Hertz while the sound pres-
sure level (SPL) is denoted in dB and calculated as:

d
SPL (dB) = 10 log,, (RMS soun pressure)

2-10-5 N/m®

The threshold of hearing in quiet is represented by the solid line at the bottom
of the diagram. It can be seen that this line is extremely non-linear and that
the human ear has its highest sensitivity at around 4kHz. The dashed line
at the bottom between c. 4 and 10kHz describes the shift of the threshold in
quiet as a result of continued exposure of the ear to loud music. The dotted
line describes the limit above which permanent damage to the ear can occur.
The threshold of pain, denoted with the dash-dotted line, is significantly
higher than the damage limit and therefore damage can occur without any
warning pain. The hatched areas mark the frequency and level ranges of

speech and music.
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Appendix B

Matlab Files

This appendix gives a description of the MATLAB function m-files that were
developed during the research. Firstly, the main tools are presented; secondly,
the analysis tools used for the verification and testing of the implementation

are given; and finally the actual listings follow in the order of the description.

B.1 VGC Files

The following list describes the fuuction of the main VGC tools {more details
are found in Section 3.4.2):

VGC: to control the voice-gender conversion

Output: voice-gender converted speech signal, log files

VGCSCALE: to perform the actual frequency scaling, deconvolution pitch scal-
ing and resynthesis of the signal

Output: linearly formant-shifted signal, independent shifted pitch

AQLA: to perform the adaptive over-lap and add on the speech signal
Output: time-scale modified signal

OLA: to perform the actual over-lap and add task on a frame

Output: locally expanded frame and local expansion factor

B.2 Other Matlab Tools

The following tools were developed during the research to monitor and verify
the correct function of the main VGC tools and to prepare for_the scaling
factor listening test:
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SPECT: to calculate and display the spectrum of a given signal along with its
sampling frequency for denormalistation
Qutput: figure with denormalised spectrum

FILTERPLOT: to calculate and display the frequency response of a given filter
along with the sampling frequency for denormalisation

Output: figure with denormalised frequency response

DECONVOLVE: to perform an LP analysis on the input signal and inverse filter
the signal using the obtained filter coefficients

Output: filter coeflicients and residual

ANALYSE: to calculate and display the denormalised frequency response of
the corresponding LP filter of the input signal and the denormalised
spectrumn of the residual; calls deconvolve
QOutput: figure with two plots, the denormalised frequency response
of the LP filter and the denormalised spectrum of the corresponding
residual

GAUSSENVELOPE: to generate a spectral envelope using a Gaussian function
for the formants scanned at the specified pitch harmonics up to Nyquist
frequency
Qutput: spectral envelope according to specifications up to Nyquist
frequency

SYNTHESISE: to synthesise a signal with a specified spectral envelope accord-
ing to the specified sampling frequency
Output: synthetic sound with the specified spectral envelope defined
by the given pitch and its harmonics

PROOF: to call the artificial vowel synthesiser and feed the obtained male syn-
thetic vowel through VGC in monitor mode
Qutput: figures displaying the signal’s spectra before and after process-
ing

ALPHAS: to set up a matrix with all possible permutations of the three scaling
factors and their three tolerance values
Qutput: 54 files containing all permutations of the three alphas and
their three tolerance values; for use by ALPHAVGC

ALPHAVGC: to take a male and a female sound sample (sustained vowel) and

perform VGC on them using the different permutations of the scaling
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factor as generated by ALPHAS
Output: 54 WAV sound files, 27 per gender

ADDNOISE: to take a perfectly clean sound sample and generate a noisified
(white noise) version of it according to the specified SNR
Output: noisified version of input with specified SNR

VCGTEST: to prepare all sound samples for the listening tests by loading and
preprocessing the required WAV-files containing the male and female
sound samples, converting them using VGC and finally saving them as
WAV-files for the listing tests
Output: soundfiles in WAV format for the listening tests

B.3 Listings

The listings are sorted in order of importance and of dependency.

VGC

function output = vgc(input,Fs,direction)

%

% output = vgc(input,Fs,direction) Version: 1.0 21.01.2002 by Elmar
% Last edited: 31.10.2002

% Function m-file to perform the voice gender comversion of input signal input
% with the sampling rate Fs in the direction specified in string direction

% This file prepares all necessary parameters for the VG conversion

% The conversion parameters are loaded from ’‘alpha_f2m’ and ’alpha_m2f’

% The sigonal is split into two bands, which are then processed independently
% by the subroutine ’vgcscale’

%  Arguments:

A input: input signal, speech sample, will be scaled to 2715

% Fs: sampling frequency of input

% direction: text string for VGC direction, either ’'f2m’, 'wm2f’ or
% ‘monitor’

% Results:

A output: output signal, converted speech sample, magnitude in range of 2715

% Calls of external routines:
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% vgcacale

'/. TECEECTEESESSRSESERSERS ==== P L e P T T

%% check vector orientation to aveoid failure:

[M,N] = size(input);

if M 7= 1;
input = input’;
end;

%% conversion options:

switch lower(direction)

case *f2m’ %) female to male, normal mode
disp(?VGC: female to male’);
load alpha_f2m %Y. get the parameters from file “alpha_f2m"
formant_scale_lo
formant_scale_hi
pitch_scale
3300
3700

F_pass

F_stop

casa 'm2f’ ¥ male to female, normal mode
disp('VGC: male to female’)};
load alpha_m2f %% get the parameters from file "alpha_m2f"
formant_scale_lo
formant_scale_hi
pitch_scale
2900
3200

n

F_pass

F_stop

cage ’monitor’ %% male tc female, monitor mode with more distinctive alphas
disp(’VGC: monitor mode’};

formant_scale_lo = 1.2 %%
formant_scale_hi = 1.3 %Y
pitch_scale =1.6 %L

F_pass = 2900
F_stop = 3200

otherwise 7%/, terminate the execution
disp(’Sorry, Dave. I cannot allow you to do that!’};
output = NaN;

return;
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end;

%% scale input signal amplitude to suit AOLA:
input = input / max(iaput) * 32000;
length_input = length(input);

%% corner frequencies:
%/ analysis filter:
Wp_ana = F_pass/(Fs/2); 4/ pass band edge frequency
Ws_ana = F_stop/(Fs/2); %), stop band edge frequency
%Y, synthesis filter:

Wp_syn
Ws_syn

(F_pass + 50)/(Fs/2); '\, pass band edge frequency
(F_stop - 50)/(Fs/2); %/ stop band edge frequency

%% FIR filter order:
N = 255;

%/ analysis filter:

fir2(N, [0 Wp_ana Ws_ana 1],{1 1 0 0]);

fir2(N, [0 Wp_ana Ws_ama 1]1,[0 0 1 1]);

%/ synthesis filter with sharper slopes (used at end of function):
B_lo_syn = fir2(2«N, [0 Wp_syn Ws_syn 1],[1 1 0 01);
B_hi_syn = fir2(2+N,[0 Wp_syn Ws_syn 1],[0 0 1 1]);

%% apply analysis filter:

B_lo_ana

B_hi_ana

lp_input = filter(B_lo_ana,1,input);
hp_input = filter(B_hi_ana,l,input);

if direction = ’monitor’

%4 check filter specs:
filterplot(B_lo_ana,1,Fs,’lin’);
filterplot(B_hi_amna,1,Fs,’lin’);
filterplot(B_lo_syn,1,Fs,’1lin’);
filterplot(B_hi_sym,1,Fs,’lin’);

%% get spectra of subbands:

[original,fol

[lo_spec,fl]

[hi_spec,fh]

save([’scripte\spectra_’,direction],’original’,’lo_spec’,’hi_spec’,’fo’,’fl’,’fh’);
end;

spect (input,Fs,0);

I

spect (lp_input,Fs,0);

spect (hp_input,Fs,0);
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%% start the timer for performance check:
tic

%% net. scaling factor for pitch:
sposf_lo = pitch_scale / formant_scale_lo;
sposf_hi = pitch_scale / formant_scale_hi;

%% call ’vgcscale’ for actual scaling:
vge_lo = vgcscale(lp_input,formant_scale_lo,sposf_lo,Fs);
vge_hi = vgescale(hp_input,formant_scale_hi,sposf_hi,Fs);

if direction = ’monitor’
%% this saves the individually scaled bands prior to resampling (for monitoring):
save(’vgeresult’,’vge_lo’,’vgc_hi’,'new_Fs’)

end;

%% end the timer:
timer_end = toc;

%44 compare processing time with signal length for realtime processing:
difference = length_input * 1 / Fs - timer_end;

W% display the time difference:

disp([*Time difference (processing time - signal length) is: ’,numZstr(differencel}])

%Y. apply synthesis filters:
vgc_lo_cleaned = filter(B_lo_syn,1,vgc_lo);
vge_hi_cleaned = filter(B_hi_syn,1,vgc_hi);

if direction = ’monitor’
%% save components for monitoring:

save vgcresults vge_lo vge_hi

save vgccleanresults vgc_lo_cleaned vgc_hi_cleaned
end;

%% superimpose results:

output = vgc_lo_cleaned + vgc_hi_cleaned;

VGCSCALE

function output = vgcscale(signal,alpba_formant,alpha_pitch,Fs);

% output = vgcscale(signal,alpha_formant,alpha_pitch,Fs)
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A ) Version: 1.1 21.01.2002 by Elmar
Y Last edited: 31.10.2002

% Function m-file to perform the formant and pitch scaling of input signal
% with the sampling rate Fs, formant scaling factor sf and

% nmnet. pitch scaling factor sposf

% Fs has currently to be in the range of 16-20 kHz

%  Arguments:

% signal: input sigmal, speech sample
A alpha_formant: formant scaling factor

A alpha_pitch: net. pitch scaling factor

% Fs: sampling frequency of signal

% Results:

pA output: cutput signal, converted sample

% Calls of external routines:
A aola, in its original form
% lpaola, aola for the LPA residual

% Description:

% The input signal (which is to be a subband when called from VGCx) is

% time-scaled and resampled immediately. This effectively shifts the formant
% and pitch frequencies by the desired formant scaling factor.

%  The signal is then windowed and the segments are LP analysed; the residuals
% are fed into the residual scaling routine ’lpacla’, which is basically a

% version of ’aola’ that is used to time-scale residuals using the original

% segment as a reference for frame alignment and displacement calculation.

signal_length = length{(signal);
progress = 100/signal_length;

%4 overall scaling of the signal, thus scaling formant and pitch frequencies
%% by the formant scaling factor; then resample to make shift effective

Lip = length(signal);

ip_scaled = aola(signal,alpha_formant);

Lip_scaled = length(ip_scaled);

signal = resample(ip_scaled,Lip,Lip_scaled);

%% set length of segment (frame) to be processed:

frame_length_time = 30; %% 30 ms for better LPAOLA stability
frame_length = round(Fs * frame_length_time / 1000)
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%% initialise segment buffer:
segment = signal(l:frame_length);

%% initialise segment pointer:
pointer = frame_length + 1;

%% initialise output vector:
output = [];

%% set LPA-filter order:
LPA_order = 10;

%% initialise internal filter state buffers for the inverse LPA filter A
%% and the synthesis filter S:

filter_state_A = zeros(i,LPA_order);

filter_state_S = zeros(1,LPA_order);

Z%——— === E=sEoomsmTsms ==== sS-SE=SE=o==3

%% Main Loop

x%— === == ======= e ] e o e R R e e R

while pointer < signal_length - frame length,

%% get LPA coefficients:
A = lpc(segment,LPA_order);

%% get residual of current segment by inverse filtering the segment
%% and buffer internal filter state:
[cisr,filter_state_buffer_A] = filter(A,1,segment,filter_state_A);
filter_state_A = filter_state_buffer_A;

%% do the scaling of the residual, i.e. pitch:

cisrs = lpaola(segment,cisr,alpha_pitch);

%% resample the scaled residual to its original length:
cisrs = resample(cisrs,frame_length,length(cisrs));

%% resynthesise the segment with the scaled residual:
{currentss,filter_state_buffer_S] = filter(1,A,cisrs,filter_state_S);

filter_state_S = filter_state_buffer_S;

%% accumulate output vector:
output = [output,currentss];
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%% load next segment:
segment = signal(pointer:pointer + frame_length - 1);

%% increment segment pointer by framelength:
pointer = pointer + frame_length;

end;

cr = sprintf(’\n’);

disp([cr, ’thank you, you have made a simple program very happy !', crl);

AOLA

function ocutput = aola(signal,Fs,alpha)

% output = acla(signal,Fs,alpha) Version: 1.0 06.09.2001
% Last edited: 31.10.2002
A Originally written by Bob
% Comments and modification by Elmar

% Function m-file to perform iterative peak overlap add to scale a signal
% Applying AOLA to a time signal results in time scaling of the signal
% without altering the frequency contents significantly

bA Arguments:

% gsignal: input signal to be scaled, amplitude range has to be +/- 32000
% Fs: sampling frequency of signal

% alpha: desired scaling factor, larger or smaller than and near 1

)

% Results:

% output: output signal, time-scaled version of the input signal

[}
%
% Calls of external routines:

% [scaled_segment,alpha n] = ola(segment,alpha)

hh== =aTassssazs=cEsE ===== ==s=== ===== =s=asss=s=sssesss=sEs
% Improvement:

% Instead of building up the output vector by simply appending the processed

% segments to the already existing trunk of the output vector the output vector
% initialised to a large enough value, and the processed segments are assigned
% to the appropriate section of output, which is pointed to by an output pointer
% At the very end output is truncated to the current pogition of output pointer
% The original lines are commented out and marked with %!
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lfm=====as=ssass==ssa= = = s=== === =

%% Preamble: set up variables and make preparations

'/.'.:.. ===z = = ==== == e e e TP e P

%4 get the length of the input signal:
signal_length = length(signal);

%% this is for a status bar:
pc = 100/signal_length,;

%% window length for processed segment, depending on sampling frequency:
frame_length_time = 25; %% 25 ms for standard speech
frame_length = round(Fs * frame_length_time / 1000);

%% initialise segment, i.e. get the first segment
%% of the input signal ready to be processed:
segment = signal(l:frame_length};

%% initialise segment pointer:
pointer = frame_length + 1;

%% initialise output pointer:

output_pointer = 1;

%% initialise output vector:

output = zeros(l,round(signal_length * alpha));

'/.. e s e R B LT === = = R it e e e e e e ]

./:'/. ————————— == SEEESSSEREESSSE SRS TSSSIENSESaSTESST=aSs ==== St

%% run until end of input signal is reached:
while pointer < signal_length - frame_length,

%4 call of subroutine ola with ’current input segment’ segment

%% and ’desired scaling factor’ alpha

%% returns ’current scaled segment’ scaled_segment and ’natural scaling factor’ alpha_n:
[scaled_segment,alpha_n] = ola(segment,alpha);

%% calculation of step size step (see Equa. 3.4/3.5):
%% Now this is the important part: the stepsize is calculated from
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%% alpha and alpha_n to match needs for the desired scaling. If the desired scaling
%% does not meet the gspecifcation, the window has to either advance slower
%% or faster, i.e. with more or lesser overlap.

step = round(((1 - alpha_n)/(1 - alpha)) * frame length);

%% 'length of current scaled segment’ length_scaled_segment:
length_scaled_segment = length(scaled_segment};

%% check ’desired scaling factor’ alpha for expansion or compression:
%% alpha is larger than 1, i.e. expansion of the signal

if alpha > 1,

A% desired scaling factor is larger than natural scaling factor,
%4 => the overlap to the already scaled segment has to be increased
if alpha > alpha_ n,

% segment 7 step
%% 1-- length_scaled_segment --|-- step --]|
%% |-- scale_step --|-- frame_length ---|
scale_step = length_scaled_segment + step - frame_length;

%% append a part of the current scaled segment to output:
W output -----—- I-- scaled_segment(1:scale_step) --|
A output = [output,scaled_segment(1:scale_step)];
output {output_pointer:output_pointer + scale_step — 1) = \\
scaled_segment(i:scale_step);

output_pointer = (output_peinter + scale_step);

%% modify the current segment, take a part of the end of the

%% current scaled segment.

%% segment = segment |----: scale_step+l length_scaled_segment :----- |
segment = scaled_segment(scale_step+1:length_scaled_segment);

%% set input segment to the next frame, includes the modified old frame

%% append segment by input segment:

%% segment = |-- segment --|--- signal(pointer+l:pointer+step) -—-|
segment = [segment,signal ({pointer + 1):(pointer + step)}];

%% increment segment pointer one step:
W4 pointer = |---- pointer ----[-- step ~--|

peinter = pointer + step;

%% desired scaling factor is smaller than or equal to natural scaling factor,
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%% i.e. scaling/overlap has to be reduced
elseif alpha <= alpha_n,

%% fairly straight forward, scaled_segment is simply appended to output:
%% output = |--- output ~--|-- scaled_segment --|
b output = [output,scaled_segment];
length_scaled_segment = length{(scaled_segment);
output{cutput_pointer:output_pointer + length_scaled_segment - 1) = \\

scaled_segment;

output_pointer = (output_pointer + length_scaled_segment);

A pointer ------—- |-- step --I
%% |-- pointer2 --|-- frame_length ~--|
pointer? = pointer + step ~ frame_length;

%% prevent error if pointer exceeds the input signal length:
if pointer2 > signal_length,
peointer2 = signal_length;
end;

%% append the already appended output by the calculated overlap:
%% output = {--—--— output —---- |--- signal(pointer+1:i2) ---|
output = [output,signal({pointer + 1):pcinter2}];

%4 increment segment pointer one step:
%% pointer = |---- pointer ---—|-- step —-|

peinter = pointer + step;
%/ prevent error if pointer exceeds the input signal length:

if pointer > signal_length,

peinter = signal_length;

end;
%4/ set input segment to the next frame:
% segment = |---- signal(pointer-frame_length+1:pointer) ----|

segment = signal (pointer - frame_length + 1:pointer);

end; % inner if statement: alpha > i & alpha > alpha_n or alpha <= alpha n

%% alpha is smaller tham 1, i.e. compression of the signal

elgseif alpha < 1,

%% desired scaling factor is smaller than natural scaling factor
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if alpha < alpha.nm,

W
scale_step = length_scaled_segment + step - frame_length;

43
%! output = [output,scaled_segment(l:scale_step)];
output (cutput_pointer:output_pointer + scale_step - 1) = \\
scaled_segment(1l:scale_step);

output_pointer = (output_pointer + scale_step);

Wh
segment = scaled_segment((scale_step + 1):length_scaled_segment);

%% current input segment

segment = [segment,signal((pointer + 1):(pointer + step))];

%% increment segment pointer one step:
%% pointer = |---- pointer ----|-- step --|

pointer = pointer + step;

4% desired scaling factor is larger than or equal to natural scaling factor
elseif alpha >= alpha_n,

%% append current scaled segment to output vector
%1 output = [output,scaled_segment];
length_scaled_segment = length(scaled_segment);

output{output_pointer:output_pointer + length_scaled_segment - 1) \\
= gcaled_segment;

output_pointer = (output_pointer + length_scaled_segment);

W

pointer3 = pointer + step - frame_length;

%% prevent error if i_p exceeds the input signal length:
if pointer3 > signal length,
pointer3 = sigpal length;
end;

wh
%! output = [output,signal((pointer + 1):pointer2)];
output (output_pointer:output_pointer + (pointer3 - (pointer + 1))) \\
= signal({pointer + 1):pointer3);

output_pointer = (output_pointer + (pointer3 - (pointer + 1)));

%% advance pointer by step
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pointer = pointer + step;
4% prevent error if pointer exceeds the input signal length:
if pointer > signal_length,
pointer = signal length;

end;

%4 set input segment to the next frame:

segment = signal({pointer - frame_length + 1):pointer);
end; %/ inner if statement: alpha < 1 & alpha < alpha_n or alpha >= alpha_n
end; A% outer if statement: alpha > 1 or alpha < 1

end; %% end of the main loop

OLA

function [s_seg,nsf} = ola(ip,dsf);

e e e e e
%
%
% [s_seg,nsf}l = ola(ip,dsf) Version: eval 1.0 19.09.2001 by Bob
% Comments by Elmar

% Last change: 30.10.2001 (Comments)

% Function m-file to perform iterative peak overlap add

%

%  Arguments:

A ip: input signal to be scaled
% dsf: desired scaling factor
A

A Results:

% s_seg: scaled segment

% nsf: natural scaling factor
A

% Calls of externmal routines:

% pks = peaks(ip,2,20)
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hzep = zorp(ip,20); %% this is "zero crossing rate profile" subroutine

%4 for some unkown reason this has been replaced with the peaks routine

%% estimate pitch by scanning segment for maxima:
%/, peaks delivers a vector with the location of 2 maxima of ip
pks = peaks(ip,2,20);

%% ’overlap add distance’ olad, i.e. peak distance:

olad = abs(pks(1,2) - pks(2,2));

%% length of the input segment:
len = length(ip);

7.1/. p— [T —— === = == = ==mo—=s=m=s= =

%% Silence Check

'/"/. == === = === m===== ===mm=sa ==z=

if olad == 0,

%% set overlap to desired overlap distance, i.e. the absolute value

%% of the difference of dsf to 1. By this amount the segment has
%% to be overlapping itself in order to achieve the dsf (draw a

%4 little diagram and you’ll see)

olad = round{abs(dsf — 1) * len); %)!' needs to be rounded to int

%% kind of overrun prevention?
if olad > (iem - 5),

%% limit the overlap add distance:
olad = len - 5;

end;
end;
Ypause

%% ’required fade lenmgth’ rfl:
rfl = 50;

%% ’required fade length minus 1’ rflml, required for index offset compensation:

rfiml = rfl ~ 1;
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Wi ’desired fade length’ dfl, i.e. the difference of lemgth and
%% overlap add distance:
dfl = len - olad; %% length - overlap add distance

%% initialise ’fadelength’ fadelen to desired fadelength:
fadelen = dfl;

%h fadelen minus 1’ flml, required for index offset compensation:
flml = fadelen - 1;

Yy == S mmszr=e=a S

%% Evaluate the Cross-Fading Settings

'/.'/.=== SEEsSESaTSnsEs=aIn=EsE EESESESETESaESEEEETEES EEEs=EREsEE

% check if desired fade length is laxrger than required fade length
%7 this means that some arrangements are required due to partial overlap

if dfl > rfl,

W fadelength is set to required fadelength:
fadelen = rfl;

%% 1. pointer for overlap function...:
pl = round((dfl - rfl) / 2);

%% ...and 2. pointer for overlap function:
p0 = dfl - rfl - pil;

%% fadephase (required for raised sine/cosine); pi is just

%% stretched out on the distance of rfl (rfiml for offset correction);

% this results in a cosine slope from 0 to 1 over the lenght of rfl:

fadeph = (O:rflml) * pi / rflmi;

%4 this is part of the cross-fading procedure, setting up

%% the cross-fade shapes/envelopes, i.e. a cosine max-min transition:

% raised cosine:
rcos = (1 + cos(fadeph)) / 2;
rcos = [ones(1,pl),rcos,zeros(1,p0)];

%% ...and the counterpart:
rsin = (1 - cos(fadeph)) / 2;
rsin = [zeros(1,pl),rsin,ones(1,p0)]; %size(rsin)

%4 dfl <= rfl, i.e. the segments are overlapped as tightly as possible

W

else
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%% fadephase (required for raised sine/cosine); pi is just stretched

%% out on the distance of flm (flml for offset correction):
fadeph = (0:flml) » pi / flmi;

%% this is part of the cross-fading procedure, setting up

%% the cross-fade shape, i.e. a raised cosine max-min (1-0) transition:

rcos = (1 + cos(fadeph)) / 2;

%, ...and the counterpart:

rsin = (1 - cos(fadeph)) / 2; Ysize(rsin)

end;

Y ========== TE=IE=I==I==I= TSSO sSESSESSCSIEESEESS =SSR

%% Do the Cross-Fading

%Z_—— - o E—mEomroEe—E—— = P =Eos=~smo ===

%% check if desired scaling factor is larger than 1, i.e. expansion:

if dsf > 1,

W
zpad = zeros(1,olad);

%% set up 1. segment, input segment and overlap add distance zeros:

segl = [ip,zpadl;

%% set up 2. segment, olad zeros and the input segment:
seg2 = [zpad,ipl;

WA

range = (olad+1):len; %size(range), size(rcos)

%% do the cross-fading of the two segments, 1. segment:
segl(range) = segl(range).*rcos;

%% cross-fage the 2. segment:

seg2(range) = seg2(range).*rsin;

%4 create result signal ’scaled segment’ by superimposing the two segments:

s_seg = round(segl + seg2);

%% ’local expansion factor’ lef:
lef = (len + olad)/len;
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%% ’natural scaling factor’ nsf = local expansion factor:
nsf = lef;

%% check if desired scaling factor is smaller thanm 1, i.e. compression:
elseif dsf < 1,

WA
segl

ip(1:d4f1);

Wh
segl

It

ip{(olad+1):len};

%size(segl), size(seg2), size(rcos)

%% do the cross-fading of the two segments:

segl segl.*rcos;

seg2 = segl.*rsin;

%% create result signal ’‘scaled signal’ by superimposing the two segments:
s_seg = round(segl + seg2);

%% ’local compression factor’ lcf:
lef = (len - olad)/len;

%% 'natural scaling factor’ nsf = local compression factor:
nsf = lcf;

end;

LPAOLA

function output = lpaola(ip,res,dsf)

% output = lpaola(ip,res,dsf) Version: 1.0 01.04.2002
%  Function m-file to perform the residual (pitch) scaling of input signal res

% with reference ip for frame alignment and desired scaling factor dsf
% This file is the LPA version of AOLA

1]

%  Arguments:

% ip: input segment, speech sample

% res: LPA residual of the input segment i
A dsf: desired scaling factor
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% Results:

pA output: output segment containing time scaled residual
A

% Calls of external routines:

% lpola, ola version for the residual

%% length of the input segment:
len = length{ipJ);
pc = 100/1len;

%% segment length for the time-scaling:
seg = 200;

%% initialise current input segment:
cips = ip{l:seg);

%% initialise current residual segment:
cress = res(l:seg);

%% initialise segment pointer:

i = seg + 1;

%% initialise output vector:

output = [J;
while i < lem, %% work until end of segment is reached

%% do the aola with the current residual scaled
[crss,nsf] = lpola(cips,cress,dsf);

%% stepsize for the proper net. scaling factor:
step = round(((1 - nsf)/(1 - dsf)) * seg);

%% length of current residual segement scaled
lecss = length(crss);

%% advance segment pointer by step:
ip =1+ step;

%% in which case the last
output = [output,crssl;
output = [output,res(i + 1:len)];
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i=i_p;

else

if dsf > 1,
if dsf > nsf,

85t = lcss + step - seg;

output = [output,crss(1:sst)]; Yeize(op)
cress = cras(sst + 1:1lcss);

cress = [cress,res(i + 1:i + stepl)];
cips = ip(i - seg:i);

i =1 + step;

elseif dsf <= nsf,

output = [output,crss];
i2 = 1 + step - seg;

output = [ocutput,res{i + 1:12)];
i =1 + step;
cips = ip(i - seg + 1:i);

cress = res{i - seg + 1:i);

end;

elseif dsf < 1,
if dsf < aosi,

sst = lcss + step - seg;

output = [output,crss(l:sst)];

cress = crss(sst + 1:1css);

cress = [cress,res(i + 1:i + step)];
cips = ip(i-seg:i);

i=1+ step;

elseif dsf >= nsf,

1

output = [output,crss];

i2 = i + step - seg;

output = [output,res(i + 1:i2)];
i =1+ step;
cips = ip(i - seg + 1:i);

cress = res(i - seg + 1:1);
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end;
end; %% end of expansion/compression check
end; %% end of segment check
end; %4 main loop

%% end of functiom

LPOLA

function [s_seg,nsfl = lpolaf(ip,res,dsf);

% [s_seg,nsf] = lpola(ip,res,dsf) Version: 1.0 01.04.2002
7%  Function m-file to perform the distance measuring and natural scaling factor
% calculation for the currently processed residual segment. The measuring is

% performed on the original input segment, not on the residual segment!

% This is the LPA version of QLA, ie works on the LPA-filtered segment

%  Arguments:

% ip: input segment, speech sample

% res: LPA residual of the input segment

% dsf: desired scaling factor

%

% Results:

A s_seg: output segment containing time scaled residual
A psf: natural scaling factor

% Calls of external routines:

% peaks, to measure required displacement

%% peaks measures the distance between the two highest peaks of ip
4% with 20 samples tolerance to avoid measuring the same peak twice:
pks = peaks(ip,2,20);

%4 length of the residual:
len = length(res);

#% distance for frame displacement:
olad = abs{pks(1,2) - pks(2,2));

%% if silence then make olad = desired olad;
if olad == 0,
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olad = round(abs{dsf - 1) * len);

if olad > (len - 5),
olad = len - 5;

end;
end;

%/ initialise required fade length:
rfl = 50;

%% required fade length minus 1 (cffset correction):
rflml = rfl - 1;

%% initialise desired fade length:
dfl = len - olad;

%% fadelength:
fadelen = dfl;

%% fadelength minus 1 (offset correction) & division by zero capture:
if fadelen == 1;

flml = 1;
else

flml = fadelen - 1;
end;

%% phase for the cross-fading cosine wave:
fadeph = (0:f1ml1} * pi/flml;

W cross-fade vector, first half:
rcos = {1 + cos(fadeph))/2;

%% cross-fade vector, second half:

rgin = (1 - cos(fadeph))/2;

if dsf > 1,

%% padding vector loaded with displacement number of zeros:
%% 1000000
zpad = zeros(l,olad);
W first segment, residual + zeros to fill up:
%A lrrrrrrrr|000000|
segl = [res,zpad];
%/ second segment, zeros to fill up + residual:
%% 1000000 rrrrrrrr!
seg? = [zpad,res];

%h range for cross-fading application:

range = (olad + 1):len; %size(range), size(rcos)
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%% apply the cross-fade function:
segl(range) = segl(range).%rcos;
seg2(range) = segZ(range).*rsin;

#% superimpose the cross-faded segments:
5_seg = round(segl + seg2);

%% local expansion factor:
lef = {(len + olad) / len;

%% natural scaling factor = local expansion factor:
nsf = lef;

%/ the segments have to be shortened, ie cut off:
%4 first segment; trancated after desired fadelength:
%W drrrrrirrr (cut off)
segl = res(1:dfl); Ysize(res), olad, len
%% second segment; maintain end portiom:
% (cut off) rrrirrrrri
seg2 = res((olad + 1):len);

% size(segl), size(seg2), size(rcos)

%% apply the cross-fade function:

segl = segl.*rcos;
segl = seg?.*rsin;

%4 superimpose the cross-faded segments:
s_seg = round(segl + seg2);

%4 local compression factor:
lcf = (len - olad) / len;

%% patural scaling factor = local compression factor:
nsf = lcf;

end;

%% end of function

SPECT

function [output,x] = spect(input,Fs,pl,varargin};
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% [output,x] = spect{input,Fs,pl,varargin) Version: 1.2 23.07.2001 by Elmar
h

% Function m-file to calculate aund display the spectrum of input

% The positive side of the spectrum is plotted against its frequency in Hz

%

%  Arguments:

% input: input signal

% Fs: sampling frequency of input sigmal

A pl: flag for plot, if pl = O then the plot is supressed
% varargin: various parameters for the plot, e.g. colours

%

% Results:

% output: positive spectrum of ip

% X: reference x-scale in Hz with respect to sr

%% spectrum of the input signal:
specip = abs(fft(input));

%% use positive spectrum segment only:

segspecip = specip(1:fix(0.5*length(specip))};

%% length of the adjusted segment:
lseg = length(segspecip);

%% generate normalised frequency scale:
ref = fix(0.5+Fs)/lseg; i) reference sr/2 for highest sample
ex = [0:1seg-1]; %4 empty vector for reference

x = fix(ex*ref); %% create reference vector

%% plot the graph with a2 normalised frequency axis if plot!=0:
if pl "= 0

figure;

plot(x,abs(segspecip) ,varargin{:})

%stem(x,abs(segspecip),varargin{:})

title(’Positve Amplitude Spectrum’);

xlabel (’Frequency in Hz’);

ylabel(’Amplitude’);

end;

%% hand back the magnitude spectrum:
output = segspecip;

FILTERPLOT

function filterplot(B,A,Fs,linlog,varargin);
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%
%
%

filterplot(B,A,Fs,linlog,varargin)

Function m-file to plot the frequency response of filter B,A

Version:

1.3 24.07.2001

de-normalised with respect to the sampling frequency Fs

Arguments:
B: denominator, filter vector B
A: nominator, filter vector A
Fs: sampling frequency for de-normalisation
linlog: ’lin’ or ’log’ for the plot

varargin: settings for plot

%% calculate frequency response:

[h,f]l=freqz(B,A,512,Fs); %/ normalised with respect to Fs

%4 visualise it:
Yfigure;
switch lower(linlog)

case ’'lin’
plot(f,abs(h),varargin{:});
case ’log’
semilogy(f,abs(h),varargin{:});
otherwise

plot(f,abs(h),varargin{:});

end;

grid on;

title('Frequency Response of the given Filter’);

xlabel (*Frequency in Hz’);

ylabel(’Magnitude’);

DECONVOLVE

function (A,residual] = deconvolve(signal,order)

)
%
%
A
%
%

%

by Elmar

{A,residual] = deconvolve(signal)

Version:

1.0

01.04.2002

Function m-file to decomvolve the input signal using LPA and inverse

filtering.

Arguments:
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% gignal: input signal to be deconvolved

% order: order of the LP apalysis

%

% Results:

) A: LP analysis coefficients

A residual: residual after inverse filtering

%h LP analyse signal:
A = lpc(signal,order);

%% deconvolve the signal:
residual = filter(4,1,signal);

ANALYSE

function analyse(signal,Fa);

% analyse(gignal,Fs)

%

% function to deconvolve a signal and display the frequency response
% of its filter as well as the spectrum of its residual

[A,R] = deconvolve(signal,i0);
.[spec,fref] = spect(R,Fs,0); -
figure

Who_2__

subplot(2,1,2)

plot(fref,spec)
title(’Residual Spectrum’)
xlabel (’Frequency in Hz’)
ylabel(’Magnitude’)

W1

subplot(2,1,1)
filterplot(1,4,Fs,’1lin’);

GAUSSENVELOPE

function [envelope,pitch] = gaussenvelope(pitch,Fmax,gender);

%

% [envelope,pitch] = gaussenvelope(pitch,Fmax,gender) written by Elmar
%

I3 17 August 2000
% function m-file to set up a Gaussian envelope

h B

% Arguments:
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% pitch: fundamental pitch frequency

% Fmax: maximum frequency

% gender: desired voice gender, influences choice of formants
%

# Results:

% output: Gaussian envelope according to input specifications
% pitch: the actually used pitch for the synthesiser

% Requires:

% gauss(mu,sigma,t)

%% switch to set up male or female sound 'E’ as in ’bet’:
%% formant centre frequencies:

switch lower(gender)

case ’'m’
pitch = 120;
F1.f = 500;
F2.f = 1530,
F3.f = 2500;
F4.f = 3250;
case 'f’
pitch = 200;
Fl1.f = 600;

F2.f = 1830;
F3.f = 2950;
F4.f = 3830;
otherwise
disp(’Sorry, that’s not permitted!’)
return

end;
%% set up index vector:
harmonics = fix(Fmax/pitch);

x = 1l:harmonics;

%% set up vector with harmonics:

f = pitch =* x;

%Y amplitudes:

Fl.a = 110;
F2.a = 90;
F3i.a = 60;
F4d.a = 30;

%% bandwidths:
F1.b = 250;
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F2.b = 28B0;
F3.b = 250;
F4.b = 280;

%% initialise formant vectors:

formantl = zeros(1,harmonics);

formant? = zeros{l,harmonics};
formant3 = zeros(1,harmonics);
formant4 = zeros{1l,harmonics);

%% loop the loop te calculate and superimpose values:
for i = 1:harmonics,
formant1(i) = gauss(F1.f,F1.b,f(1));

formant2(i) = gauss(F2.f,F2.b,f(i));

formant3(i) = gauss(F3.f,F3.b,f(i});

formant4 (i) = gauss(F4.f,F4.b,f(i));
end;

envelope = Fl.a * formantl + F2.a * formant2 + F3.a * formant3 + F4.a * formant4;

SYNTHVOWEL

function output = synthvowel{(pitch,envelope,duration,Fs);

%
% output = synthvowel(pitch,envelope,duration,sr) written: 14 June 2k by Elmo

% function m-file to set up an artificial vowel with a specified spectral envelope

%  Arguments:

% pitch: fundamental pitch frequency in cycles per second

4 envelope: vector describing the relative amplitudes of the pitch harmonics
% duration: duration of the output signal in seconds

% Fs: sampling frequency in cycles per second

%

% Results:
% output: synthesised vowel signal

%% set up a time vector with the length of the output signal:
t = [0:1/Fs:duration - 1/Fs];

%% initialise result vector with zeros:

signal = zeros(1,length(t));

%% sine constant:
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twopi = 2*pi;

%% loop the loop for the envelope:

for i = 1:length(envelope),
%% the output vector is a superposition of the individual pitch harmonics:
harmonics = pitch * i;
signal = signal + envelope(i) * sin(twopi * harmonics * t);

end;

%% assign output value:
output = signal;

PROOF

%/ script to proove the correct functicmality of the VGC implementation

Fs
Fmax

16000;

round (Fs/2);

duration = 1;

t_ref = [0:1/Fs:duration-1/Fs];
N = 10;

%% set up spectral envelopes:
[envelopeM,pitchM] = gaussenvelope(120,Fmax,’'m’);

% synthesise the signals accerding to envelope:
voweld = synthvowel(pitchM,envelopeM,duration,Fs);

%4 convert signal:

converted_m2f = vgc{vowelM,Fs, 'monitor’);

%% analyse original vowel as reference:
[Ar ,Rr] = deconvolve(vowelM,12);
{specR,frefR] = spect(Rr,Fs,0);

[bR, fR]=freqz(1, Ar,8000,Fs);

%4 analyse converted signal:

[Am,Rm] = deconvelve(converted_m2f,12);
[spec,fref] = spect(Rm,Fs,0);
[k,f)=freqz(1,Am,B000,Fs);

%% open a new plot:
figure

%% plot the original spectrum:
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Who_1__
subplot(2,1,1)
plot (fR,abs (hR))
hold on

x1im([0 6000])
Wh__2__
subplot{2,1,2)
plot(frefR,specR)
hold on

x1im([0 8001)

%% plot the cobverted signal spectrum on top
Who 1

subplot(2,1,1)

plot(f,3*abs(h),'r--7)

x1im([0 €000])

title(’Formant Spectra’)
ylabel(’'Magnitude’)

hold on

Wh__2._

subplot(2,1,2)

plot (fref,spec/max(spec)*max{specR),’r-~);
title(’Excitation Spectra’)

x1im( [0 800])

xlabel (’Frequency in Hz’)
ylabel(’Magnitude’)

ALPHAS

%% Script Alphas to evaluate the optimal alphas for VGC 31.10.2002
WA

%% Description:

A% This file assigns and permutates all possible combinations of the three
Wh VGC scaling factors, ie pitch, formant low and formant high.

%% The resulting permutations are then saved using numbered filenames.

%% The values used for the alphas are the optimal values and

%4 values with a +/- 107 tolerance from that optimal value.

%% assign tolerance VGC:

tolerance = 0.1;

%% the pitch scaling factor:
alpha_P
alpha_P(2)

i

zeros(1,3);
1.76;

i
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alpha_P(1) alpha_P(2) - tolerance;

alpha_P(3)

"

alpha_P(2) + tolerance;

%% the low band formant scaling factor:

alpha L = zeros(1,3);
alpha_L(2) = 1.2;
alpha_L(1) = alpha L(2) - tolerance;

]

alpha_L{3) = alpha_L{(2) + tolerance;

%% the high band formant scaling factor:

alpha H = zeros(1,3);

alpha H{2) = 1.18;

alpha_H(1) = alpha H(2) - tolerance;
alpha _H(3) = alpha_H(2) + tolerance;
A S permuation section________

%% initialise alpha:
alpha = zeros(3,27);

%% the matrix index needs to be counted up to 27, which is the number
%% of all possible permutations of the three parameters and their three
%% tolerance values. The index is calculated by converting the three
%% counter states from TRINARY into DESMD, O and 1 are required for
W% offset correction:
for a = 0:2
for b = 0:2
for ¢ = 0:2
alpha(l,a*9 + b*3 + ¢ + 1)
alpha(2,a*9 + b*3 + ¢ + 1)
alpha(3,a*9 + b*3 + ¢ + 1)

alpha_P(a + 1);% alpha _P({a+1);%alpha P(a);
alpha_L(b + 1);%rem(i,b);%alpha_L(b);
alpha H(c + 1);%rem(i,c);%alpha_H{c);

n

end
end
end
A S main loop to save all the alphas________
for i = 1:27

%% reference number as string:
num = int2str(i);

%4 save the M2F scaling factors for vgc:

pitch_scale = alpha(1l,i);
formant_scale_lo = alpha(2,i);
formant_scale_hi = alpha(3,i);
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save([’alphas\alpha_m2f’,num],’pitch_scale’,’formant_scale_lo’,’formant_scale_hi’)

%4 save the F2M scaling factors for vgc:
1/alpha(l,i);
1/alpha(2,i);
1/alpha(3,i);

pitch_scale

formant_scale_lo

formant _scale_hi
save([’alphas\alpha_f2m’,num],’pitch_scale',’formant_scale_ib',’formant_scale_hi')
end;

cr = sprintf(’\n’);
disp([’alpbas is finished !’, cr])

ALPHAVGC

%% script to pick a vowel and process it all the 27 times for the optimal alpha
% listening test

%% load the vowels:
loadvowels;

Fs = vowels.Fs;

%% do the processing for each gender
for g = 1:2;
if g == 1;
gender = *f2m’;
A% stretch the signal to leave space for manual correction:
aola(vowels.f08.W,2);

sample
else
gender = ’'m2f’
%4 stretch the signal to leave space for manual correction:
gsample = aola(vowels.m03.W,2);
end;
%% loop the loop to VGC process the samples with
for i = 1:3;
4 creat string reference:
num = int2str(i);
%4 load the specific setting:
load([’alphas\alpha_’,gender,numl);
%% save it so VGC can use it:
save([’alpha_’,genderl,’pitch_scale’,’formant_scale_lo’,’formant_scale_hi’);
%% do the VGC processing:
output = vgc(sample,Fs,gender);

%% save the normalised VGC result as wav:
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wavurite(output/(max{cutput) * 2),Fs, 16, [*alpharesults\vgc’,gender,num]};
end;

end;

ADDNOISE

function output = addnoise{input,SNR);

% NI/ o NI/
l/. II@: / ) - \ (@n
Ao/ NS N

% \__U_/

%

% (output] = addnoise(input,SNR) Version: 1.1 01.05.2002 by Elmar
1A

% Function m-file to add white noise to the signal input to achieve the
% specified SNR

%  Arguments:

% input: input signal

% SNR: signal-to-noise ratio in dB

%

%  Results:

% output: noisy version of input with the specified SNR
%

%  External function calls:

A IS

%

signal.vector = input;

%% get RMS of signal:
signal .RMS = rms(signal.vector);

%% set up a poise vector with random numbers:

noise.vector = randn(size(signal.vector));

%4 remove DC compoment:

noise.vector = noise.vector - mean(noise.vector);

%% calculate RMS value of noise:

noise.RMS = rms{noise.vector);

%% calculate required RMS value of noise to be added:
noise.required RMS = signal .RMS / 10~ (SNR/20);
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%% scale noise to the required RMS level:

noise.required = noise.vector * noise.required_RMS / noise.RMS;

%% superimpose signal and noise:

output = signal.vector + noise.required;

VGCTEST

%4 Script to test VGC with 2 male and 2 female samples

%% 1. load the sounds and correct vector orientation:
[male01,Fs] = wavread(’test-male0Q1’);

male(l = maleQ1’;

[male02,Fs] = wavread(’test-male02’);

maled2 = male(2’;

[female01,Fs] = wavread{(’test—femaleQ1’);

femaleQl = femaleO1l’;

[female02,Fs] = wavread{’test-female02’);

female02 = female(2’;

%% for noise tests:

[malen,Fs]l = wavread(’test-malen’);
malen = malen’;

[femalen,Fs] = wavread(’test-femalen’);

femalen = femalen’;

%4 2. perform VGC on clean samples, incl B-2-B:
vgc(maleQ1,Fs, *m2f’);

vgem02 = vge(male02,Fs, 'm2f’);

vgef0l = vge(femaleQl,Fs,’ ’f2m’);

vgef02 = vgc{femalel2,Fs, f2m’);

%% B-2-B samples:

b2bm01 = vgc{vgemO1,Fs,’fom’);

b2bm02 = vgc(vgcm02,Fs,’f2m’);

b2bf01l = vge{vgcfO1,Fs, ’m2f’);

b2bf02 = vgc(vgcf02,Fs, m2f’);

i

vgemil

4% write conversion results to WAV files:
uavwrite(vgcmOl.Fs,lG,’vgcﬁOl.wav’);
wavwrite{vgcm02,Fs,16, 'vgem02.vav’);
wvavwrite(vgcf01,Fs,16, 'vgefOl. . wav’);
wavwrite(vgcf02,Fs,16, 'vgcf02.vav’);

%% B-2-B samples:
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wavwrite (b2bmQ1,Fs, 16, 'b2bm01.wav?’) ;
wavwrite(b2bm02,Fs,16, 'b2bm02.wav’);
wavwrite(b2bfQ1,Fs, 16, 'b2bf01.wav’);
wavwrite(b2bf02,Fs, 16, 'b2bf02.wav’);

%% 3. perform VGC on telephone bandlimited samples:
%% set up filter:

flo = 300;

fhi = 3400;

B = fir2(256,[0 2#flo/Fs 2xflo/Fs 2*fhi/Fs 2+fhi/Fs 1]1,[0 0 1 1 0 0]);
filterplot(B,1,Fs,’1lin’);

%% apply filter:

phonem(1 = filter(B,1,male01);

phonem02 = filter(B,1,male02);

phonef01 = filter(B,1,female01);

phonef(2 = filter(B,1,female02);

4% convert filtered samples:

It

vgcphonemQ1 = vgc(phonemQ1,Fs, 'm2f’);

vgcphonem02 = vgc{phonem02,Fs, 'm2f’);
vgephonef0l = vgc(phonef01,Fs,’f2m’);
vgcphonef02 = vgc(phonef02,Fs, f2m’);

%% write conversion results to WAV files:

wavwrite(vgcphonem01,Fs, 16, *phonem01.vav’);
wavwrite(vgcphonem02,Fs, 16, 'phonem02.wav’);
wavwrite(vgcphonef01,Fs, 16, *phonef0l.vav’);
wavwrite(vgecphonef02,Fs, 16, 'phonef02.vav’);

%4 4. VGC noise test:

%% prepare poisy files:

%/ male samples:

addnoise (malen,20) ;
noisem02 = addnoise(malen,10);

noisem0l

noisem03 = addnoise(malen,6);
noisem04 = addnoise(malen,0):
noisem05 = addnoise(malen,-3);
noisem0f = addnoise(malen,-6);
%% female samples: 7
noisef0l = addnoise(femalen,20);
noisef(2 = addnoise(femalen,10);

noisef03 = addnoise(femalen,6);
noisef04 = addnoise(femalen,();
noisef05 = addnoise(femalen,-3);
noisef(Qf = addnoise(femalen,-6);
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%% convert noisy files:
%/ male samples:
vgcnoisemQl = vgc(noisemQ1,Fs, ’m2f’);

vgcnoisem02 = vgec(noisem02,Fs,’m2f’);

n

vgcnoisem03 = vgc(noisemQ3,Fs, m2f’);
vgcnoisem04 = vgc(noisemQ4,Fs, ’m2f’);
vgcnoisen05 = vge(noisem05,Fs, ’m2f’);
vgcnoisemQ6 = vgc(noisem0B,Fs,’'m2f’);
%% female samples:

vgcnoisef0l = vgc(noisef0l,Fs,’ f2m’);
vgcnoisef02 = vgc(noisef02,Fs,’f2m’);
vgcnoisef03 = vgc(noisef03,Fs,’'f2m’);
vgenoisef04 = vge(noisef04,Fs,’ f2m’);
vgenoisef0b = vgc(noisef05,Fs,’f2m’);
vgenoisef06 = vgc(noisef06,Fs,"f2m’);

%/ save converted noisy files:

%% male samples:

wavwrite(vgcnoisem01,Fs,16,’ vgenoisemQl.wav’);
wavwrite(vgcnoisem02,Fs,16.'vgcnoisem02.wav’);
wavurite(vgenoisem03,Fs, 186, *vgcnoisem03.vav’);
wavwrite(vgcnoisem04,Fs, 16, 'vgcnoisem04.vav’);
wavwrite{vgcnoisem05,Fs,16, 'vgcnoisem05.wav’);
wavwrite(vgcnoisemOS,Fs,16,’vgcnoisemOB.wav’);
% female samples:
vavwrite(vgenoisefO1,Fs, 16, *vgcnoisef0l.vav’);
wvavwrite(vgenoisef02,Fs, 18, *vgenoisef02.wav?’);
vavwrite(vgcnoisef03,Fs,16, vgcnoisef03 . wvav’);
wavwrite(vgcnoisefOé,Fs,16,’vgcnoisef04.wav’);
vavwrite(vgcnoisef05,Fs, 16, ’ vgecnoisef05. . wav?’);

wavurite(vgcnoisefOS,Fs,16,’vgcnoisefos.wav’);
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