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Two component integrable systems modelling shallow water waves
Rossen I. Ivanov

The aim of this talk is to describe the derivation of shallow water model equa-
tions for the constant vorticity case and to demonstrate how these equations can
be related to two integrable systems: a two component integrable generalization
of the Camassa-Holm equation and the Kaup - Boussinesq system.

The motion of inviscid fluid is described by Euler’s equations:

∂v
∂t

+ (v · ∇)v = −1
ρ
∇P + g, ∇ · v = 0,

where ρ is a constant density, v(x, y, z, t) is the velocity of the fluid at the point
(x, y, z) at the time t, P is the pressure in the fluid, g = (0, 0,−g) is the constant
Earth’s gravity acceleration.

We consider a motion of a shallow water over a flat bottom, which is located
at z = 0. We assume that the motion is in the x-direction, and that the physical
variables do not depend on y. Let h be the mean level of the water and let
η(x, t) describes the shape of the water surface, i.e. the deviation from the average
level. The pressure is P = PA + ρg(h − z) + p(x, z, t), where PA is the constant
atmospheric pressure, and p is a pressure variable, measuring the deviation from
the hydrostatic pressure distribution.

On the surface z = h+η, P = PA and therefore p = ηρg. Taking v ≡ (u, 0, w) we
can write the kinematic condition on the surface as (e.g. following [1]) w = ηt+uηx

on z = h + η. Finally, there is no horizontal velocity at the bottom, thus w = 0
on z = 0.

Let us introduce now dimensionless parameters ε = a/h and δ = h/λ, where a
is the typical amplitude of the wave and λ is the typical wavelength of the wave.
Now we can introduce dimensionless quantities, according to the magnitude of the
physical quantities, see [1, 2] for details: x → λx, z → zh, t → λ√

gh
t, η → aη,

u → ε
√

ghu, w → εδ
√

ghw, p → ερgh.
Now let us notice that there is an exact solution of the governing equations of

the form u = Ũ(z), 0 ≤ z ≤ h, w ≡ 0, p ≡ 0, η ≡ 0. This solution represents an
arbitrary underlying ’shear’ flow. In the presence of a shear flow the horizontal
velocity of the fluid will be Ũ(z) + u. The scaling for such solution is clearly
u → √

gh(Ũ(z) + εu), and the scaling for the other variables is as before. The
system of equations is (the prime denotes derivative with respect to z):

ut + Ũux + wŨ ′ + ε(uux + wuz) = −px,

δ2(wt + Ũwx + ε(uwx + wwz)) = −pz,

ux + wz = 0,

w = ηt + (Ũ + εu)ηx, p = η, on z = 1 + εη,

w = 0 on z = 0.
1



The simplest nontrivial case is a linear shear, Ũ(z) = Az, where A is a constant.
We choose A > 0, so that the underlying flow is propagating in the positive
direction of the x-coordinate.

The vorticity is ω = (U + u)z − wx or in terms of the rescaled variables, ω =
A+ε(uz−δ2wx). We are looking for a solution with constant vorticity ω = A, and
therefore we require that uz − δ2wx = 0. Together with the equation ux + wz = 0
it gives

u = u0 − δ2 z2

2
u0xx +O(ε2, δ4, εδ2), w = −zu0x + δ2 z3

6
u0xxx +O(ε2, δ4, εδ2),

where u0(x, t) is the leading order approximation for u.
With these expressions we obtain the following from the condition on the sur-

face, ignoring terms of order O(ε2, δ4, εδ2):

(1) ηt + Aηx +
[
(1 + εη)u0 + ε

A

2
η2

]
x
− δ2 1

6
u0xxx = 0

From the second of the Euler’s equations and the condition on the surface we
have p = η − δ2

[
1−z2

2 u0xt + 1−z3

3 Au0xx

]
, then the first of the Euler’s equations

gives (Note that there is no z-dependence!)

(2)
(
u0 − δ2 1

2
u0xx

)
t
+ εu0u0x + ηx − δ2 A

3
u0xxx = 0.

The linearised equations are

(3) u0t + ηx = 0, ηt + Aηx + u0x = 0,

giving ηtt + Aηtx − ηxx = 0. This linear equation has a travelling wave solution
η = η(x− ct) with a velocity c satisfying c2 −Ac− 1 = 0, or

c =
1
2

(
A±

√
4 + A2

)
.

If there is no shear (A = 0), then c = ±1. In general, there is one positive and
one negative solution, representing left and right running waves. Suppose that we
have only one of these waves, then η = cu0 +O(ε, δ2) - e.g. from (3).

By introduction of a new variable ρ = 1 + εαη + ε2βη2 + εδ2γu0xx, where

α =
1

3(1 + c2)
+

2c2

3(1 + c2)

(
1+

Ac

2

)
, β =

1− (3 + c2)(1 + Ac
2 )

3(1 + c2)
α, γ =

α

6(c−A)
,

and a change of variables (rescaling) u0 → 1
αεu0, x → δ√

B
x, t → δ√

B
t where

B = 1
2 + 1

6(c−A)

(
A− 1

c−A

)
the equations (1), (2) transform into the system

mt + Amx −Au0x + 2mu0x + u0mx + ρρx = 0, m = u0 − u0xx(4)
ρt + Aρx + (ρu0)x = 0,(5)

Before the rescaling we had αεη = ρ − 1 − ε2βc2u2
0 − εδ2γu0xx. Since in the

leading order η = cu0 the rescaling of η is η → 1
αεη. Thus in terms of the rescaled

variables η = ρ− 1− βc2

α2 u2
0 −B γ

αu0xx.
2



The system (4), (5) is an integrable 2-component Camassa-Holm system that
appears in [3], generalizing the famous Camassa-Holm equation [4]. The Lax
representation for this system is ( ζ is a spectral parameter)

Ψxx =
(
− ζ2ρ2 + ζ(m− A

2
) +

1
4

)
Ψ,

Ψt =
( 1

2ζ
− u0 −A

)
Ψx +

1
2
u0xΨ.

An alternative derivation for the case of zero vorticity, based on the Green-Naghdi
equations is reported in [5].

Another integrable system matching the water waves asymptotic equations to
the first order of the small parameters ε, δ is the Kaup - Boussinesq system. We
describe briefly its derivation. Introducing V = u − δ2( 1

2 − A
3c )uxx the equation

(2) can be written as Vt + εV Vx + ηx = 0. Equation (1) in the first order in ε, δ is

ηt +
[
Aη + (1 + εη)u0 + ε

A

2
η2

]
x
− δ2 1

6
u0xxx = 0

and with a shift η → η − 1
ε it becomes

ηt + ε(1 +
Ac

2
)(ηu0)x − δ2 1

6
u0xxx = 0 or ηt + ε

1 + c2

2
(ηV )x − δ2 1

6
Vxxx = 0.

Further rescaling leads to the Kaup - Boussinesq system

Vt + V Vx + ηx = 0, ηt − 1
4
Vxxx +

1 + c2

2
(ηV )x = 0,

which is integrable iff A = 0 (c2 = 1) with a Lax pair [6]

Ψxx = −
(
(ζ − 1

2
V )2 − η

)
Ψ, Ψt = −(ζ +

1
2
V )Ψx +

1
4
VxΨ.

It is interesting to investigate further which specific properties of the original
governing equations are preserved in the ’integrable’ approximate models. For
example the 2-component Camassa-Holm system for certain initial data admits
breaking waves solutions [5].
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