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Abstract 

Non-invasive measurements of cellular function in in-vitro cultured cell lines using vibrational spectroscopy 

require the use of spectroscopic substrates such as quartz, ZnSe and MirrIR etc. These substrates are generally 

dissimilar to the original in-vivo extracellular environment of a given cell line and are often tolerated poorly by 

cultured cell lines resulting in morphological and functional changes in the cell. The present study demonstrates 

various correlations between vibrational spectroscopic analyses and biochemical analyses in the evaluation of the 

interaction of a normal human epithelial keratinocyte cell line (HaCaT) with MirrIR and quartz substrates coated 

with fibronectin, laminin and gelatin. The findings of this study suggest that there is a correlation between 

quantitative measurements of cellular proliferative capacity and viability and peak area ratios in FTIR spectra, 

with replicated differences in similar areas of the observed Raman spectra. Differences in the physiology of cells 

were observed between the two spectroscopic substrates coated in fibronectin and laminin, but little differences 

were observed when the cells were attached to gelatin coated quartz and MirrIR slides. The correlations 

demonstrate the sensitivity of the spectroscopic techniques to evaluate the physiology of the system. Furthermore 

the study suggests that gelatin is a suitable coating for use in spectroscopic measurements of cellular function in 

human keratinocytes, as it provides a material that normalises the effect of substrate attachment on cellular 

physiology. This effect is likely to be cell-line dependent, and it is recommended that similar evaluations of this 

effect are performed for those combinations of spectroscopic substrate and cell lines that are to be used in 

individual experiments. 

 

Keywords: Raman/FTIR Spectroscopy, HaCaT keratinocytes, adhesion effects, 

spectroscopic substrates  
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1. Introduction 

Vibrational biospectroscopy has advanced considerably in recent years, with attention moving 

from a focus on measurement of the morphology of cellular and tissue species, to, recently, 

analyses of the relationship between the biochemical content of biological species and the 

functionality of such species. At present Fourier Transform Infrared Microspectrosopy 

(FTIRM) and Confocal Raman Microspectroscopy (CRM) have identified in-situ molecular 

alterations associated with cell death via apoptosis [1-3] or necrosis [4, 5], or as a result of 

proliferative changes in cellular activity [6-8] or mitosis [9]. It has also been shown that these 

modalities can identify molecular changes associated with changes in the phenotype of 

differentiating embryonic cells [10, 11]. A key characteristic of both CRM and FTIRM is 

their potential to provide non-invasive information on the total, spatially resolved, molecular 

composition of the sample, without the need for the introduction of extraneous chemical 

markers into the cell. It has been established that FTIRM is non-toxic to live cells, even at the 

increased levels of power utilised in Synchrotron Radiation Fourier Transform Infrared 

Microspectroscopy (SRFTIRM) [12]. CRM, however, has been shown to result in photo-

induced effects when visible excitation wavelengths are utilised [13-15] as compared to when 

wavelengths in the Near IR and IR are utilised (i.e. 785nm and above) [13] with live cell 

cultures. No such effects have been observed to date with the use of CRM applied to 

chemically fixed cellular species, however. 

 

It is known that biomaterial surfaces effect significant responses in the cell, but the underlying 

molecular mechanisms generating these responses remain poorly understood [16]. Non-

invasive spectroscopic measurements of cellular function in in-vitro cultured cell lines require 

substrates such as quartz, ZnSe and MirrIR (Ag/SnO2 coated glass for FTIRM from Kevley 

Technologies) etc. It has been demonstrated that surfaces and scaffolds for cell culture can 

induce changes in cellular adhesion and motility [17, 18], in their proliferation and 

differentiation [16, 19], and in gene expression [20], ultimately influencing the fate of the cell 

[21]. Much of the interaction of adherent cells with their culture substrates is dependent on the 

surface chemistry [18, 22] and surface energy [23]. When substrates are coated with 

biocompatible molecules to effect or enhance cellular proliferation, the conformation of the 

molecule has also been shown to produce changes in the level of response [19].  
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In this study vibrational spectroscopy is employed to evaluate the physiology of human 

keratinocyte cell cultures on MirrIR and quartz, which are coated with biocompatible 

molecules. The spectroscopic data are correlated with both standard absorbance and 

fluorescence assays as measures of the viability and proliferative capacity of the cells on these 

coated substrates. The study thus aims to both demonstrate the efficacy of the spectroscopic 

techniques to evaluate the physiology of the system, and to evaluate the optimum substrates 

for cell growth for spectroscopic studies. 
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2. Methods 

2.1 Cell Culture and Sample Preparation 

A spontaneously immortalized human epithelial keratinocyte cell line (HaCaT) derived from 

adult skin was used throughout this work. They are normal, non-tumourigenic and p53 

mutated adult keratinocytes. The cells are polygonal, of approximately 20 μm diameter, 

producing a ‘cobblestone’ appearance in culture [24]. HaCaT cells were cultured in 

Dulbecco’s MEM: F12 (1:1) medium (Sigma, Dorset, U.K.) containing 10% fetal calf serum 

(Gibco, Irvine, U.K.) 1% penicillin-streptomycin solution 1000 IU (Gibco, Irvine, U.K.), 

2mM L- glutamine (Gibco, Irvine, U.K.) and 1μg/ml hydrocortisone (Sigma, Dorset, U.K.). 

Cells were maintained in an incubator at 37ºC, with 95% humidity and 5% CO2. Subculture 

was routinely performed when cells were 80-100% confluent, using a 1:1 solution of 0.25% 

trypsin and 1mM versene at 37º C. 

 

The present work was performed to evaluate HaCaT cell adhesion to three substrate coatings, 

fibronectin, laminin and gelatin. Fibronectin is a large multidomain glycoprotein that is found 

throughout connective tissue, on the surface of cells and within bodily fluids. It facilitates cell 

adhesion through binding to integrin receptors on the cell surface, subsequently producing 

regulation of genetic responses in the cell and influencing cell growth and differentiation [25]. 

Laminin is also a heterotrimeric glycoprotein [26], which facilitates cell adhesion in a similar 

manner, though it binds to a different set of cellular integrins. Gelatin is a protein by-product 

of the thermal denaturation of collagen [27, 28]. 

 

HaCaT cells were loaded at a concentration of 1 × 105 cells per substrate onto MirrIR (Kevley 

Technologies, Inc.) and quartz (UQG Optics Ltd.) substrates both uncoated and coated in 

fibronectin (1μg/ml solution in PBS; from human plasma), gelatin (2% in dH2O; type B from 

bovine skin), and laminin (10μg/ml from Engelbreth-Holm-Swarm murine sarcoma). All 

coating materials were purchased from Sigma-Aldrich and used without further purification. 

MirrIR slides were cut into 20 x 25 mm pieces, sterilised in ethanol and dried in a laminar 

flow hood before coating with the substrate molecules. Both spectroscopic substrates were 

coated in approximately 300 μl of the coatings. 
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Spectroscopic substrates were incubated for 24 hours at 4 C in the gelatin solution, for 4 

hours at room temperature in the laminin solution, and for 40 mins at room temperature in the 

collagen and fibronectin solution. The solutions were aspirated from the fibronectin and 

laminin coated substrates and washed in PBS before deposition of the cell suspension. The 

solution was aspirated from the gelatin coated spectroscopic substrates and the cell suspension 

deposited immediately. Cells were cultured on these growth substrates for 3 days before 

subsequent spectroscopic and fluorescence/absorbance assays. 

O

At 3 days, the cells were fixed 

in 4% formalin in PBS for Raman and FTIR analysis. They were washed in dH2O and stored 

in dH2O at 4oC for subsequent Raman analysis and in a dessicator until subsequent FTIR 

analysis. 

 

The fluorescence and absorbance assays were averaged over two independent experiments 

(n=2), with 3 and 9 replicates per experiment, respectively. Spectroscopic measurements were 

taken from one experiment performed in triplicate. Control samples are those in which cells 

are plated directly onto the uncoated spectroscopic substrate. 
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2.2 Fluorescence and Absorbance Assays 

Parallel cultures were prepared in 6-well plates for spectroscopic assay and investigation of 

biochemical activity (via measures of proliferative capacity (Alamar Blue fluorescence), 

lysosomal activity (Neutral Red fluorescence) and protein content (Coomassie Blue 

absorbance)). Each assay utilised a Tecan Genios microplate reader, with a 5x5 matrix of 25 

measurements taken for each well of the 6 well plates to minimize point-to-point variations in 

fluorescent or absorbance activity. The final fluorescence or absorbance measurement was an 

average of each of the 25 measurements.  

 

Alamar Blue (AB) is a resazurin dye [29] (dark blue, non-fluorescent) which is reduced to 

resorufin (pink and highly fluorescent) through a redox reaction, the level of which is 

indicative of cellular proliferation [29, 30]. Throughout this study, the pink, fluorescent 

molecule resorufin was excited at 540 nm and the fluorescence read at 595 nm. AB was added 

to the HaCaT cells in DMEM F-12 (15.6 g/L; Sigma-Aldrich) which did not contain phenol 

red (as this interferes with the fluorescence of resorufin) and NaHCO3 (1.2 g/L) giving a pH 

of 6.9 ± 0.2. Neutral Red (NR; 3-Amino-7-dimethylamino-2-methyl-phenazine 

hydrochloride) is a supravital fluorescent dye which is weakly cationic and can diffuse across 

the cellular membrane, accumulating in cellular lysosomes [31-33]. Increases in cell wall 

permeability and lysosome fragility are associated with the latter stages of cell death, thus the 

level of accumulation of NR in the cell is indicative of the level of viability in a sample of 

cells. Neutral Red stock solution was prepared using 0.5 mg of NR dye in 100 ml DMEM-F12 

minus phenol red indicator [31-33].  

 

The AB/NR working solution was prepared using 5% AB and 1.25% of the NR stock in 

DMEM-F12 minus phenol red. A range finding study found that a reasonable incubation time 

with this solution was 1.5 hours (figure 1), and that no quenching of fluorescence was 

observed when cells were incubated in a mixture of AB/NR. Samples were therefore 

incubated with 2.5ml of the AB /NR solution at 37oC for 1.5 hours, at which point the AB 

fluorescence was measured. Samples were then washed once in 2.5 ml PBS and 2.5 ml of a 

fixative solution containing 1% glacial acetic acid and 50% ethanol in dH2O, to lyse the cell 



and release the NR dye. Cells were then shaken at 240 rpm for 30 mins and fluorescence was 

read at 650 nm after excitation at 540 nm [31-33].  
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Figure 1. Optimisation of AB Fluorescence Assay 

 

Commassie Blue is a dye which binds to protein within the lysed cell [34]. After binding, and 

subsequent washing to remove unbound Coomassie Blue, it is possible then to quantify via 

measurement of absorbance at 595nm (with a reference absorbance measurement at 340nm) 

the total protein content within the cell [35, 36]. In the present work, after the NR 

fluorescence had been measured, the samples were washed once in 2.5mls of the fixative 

solution, 2.5 mls of the Coomassie Blue solution was then added as per Liebsch and 

Spielmann [35], samples were shaken for 10 mins at 240 rpm and subsequently washed twice 

in a washing solution (10% ethanol, 5% glacial acetic acid, 85% distilled water), with another 

shaking step for 10 minutes on the second wash. Finally 2.5 mls of a measuring solution (1M 

Potassium Acetate in 70% ethanol and 30% distilled water) was added and the samples were 

shaken in this solution for 10 minutes at 240 rpm. At this point the absorbance of the samples 

was measured at the wavelengths above.  

 7
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2.3 Spectroscopic Assays 

2.3.1 Raman Spectroscopic Measurements 

An Instruments S.A. (Jobin-Yvon) Labram 1B spectrometer was used throughout this work, 

which is fed by an external Argon-Ion laser operating at 514.5 nm. Throughout the 

measurements, a x100 objective was employed which gave a spatial resolution of ~1μm at the 

sample. The system was pre-calibrated to the 520.7 cm-1 spectral line of Silicon. The laser 

power at the objective focus was found to be 15 mW. The Labram system is a confocal 

spectrometer that contains two interchangeable gratings (600 and 1800 lines/mm 

respectively). In the following experiments the 1800 lines/mm grating was used, which gave a 

spectral resolution of around 1 cm-1 per pixel. The backscattered Raman signal was integrated 

for 120 seconds over the spectral ranges from 400 to 1900 and 2500 to 3600 cm-1 with respect 

to the excitation frequency. The detector used was a 16-bit dynamic range CCD detector 

which is Peltier cooled. Images of the sample were acquired using a video camera within the 

system. 

 

Spectra were recorded from the cellular nucleus, with 45 spectra recorded per substrate and 

averaged. A quartz background spectrum was acquired for each individual quartz coverslip 

used, and subsequently subtracted before averaging. A simple baseline subtraction was 

performed in Matlab. A Savitsky-Golay filter (5th order, 17 points) was used to smooth 

spectra. Band assignments were based on the data in table 1, which is taken from numerous 

publications and reviews [37-41].  

 



 

Wavenumber (cm-1) Assignment 
3070 Amide B (CNH bend) 
2960 CH3 stretch (antisymmetric) due to methyl terminal of membrane phospholipids 
2936 CH3 stretch 
2928 CH2 antisymmetric stretch of Methylene group of membrane phospholipids 
2886 CH2 stretch (symmetric) due to methylene groups of membrane phospholipids 
2854 CH2 stretch 
2739 CH stretch 
1736 C=O stretch 

1667; 1640 Amide I (protein) C=O stretching of amide coupled to NH2 in-plane bending 
1657, 1659 C=C stretch (lipids), Amide I (α-helix, protein) 

1611 Tyr (aromatics) 
1566 Phe, Trp (phenyl, aromatics) 
1550 Amide II absorption due to N-H bending coupled to a C-N stretch 
1509 C=C stretch (aromatics) 
1452 CH2 stretch deformation of methylene group (lipids) 
1439 CH2 def. 
1420 CH3 asymmetric stretch (lipids, aromatics) 
1397 CH3 bending due to methyl bond in the membrane 
1382 COO- symmetric stretch 
1367 CH3 symmetric stretch 
1336 Adenine, Phenylalanine, CH deformation 
1304 Lipids CH2 twist, protein amide III band, adenine, cytosine 
1267 Amide III (α-helix, protein) 
1250 Amide III (β-sheet, protein) 
1235 Antisymmetric phosphate stretching 
1206 C-C stretch, C-H bend 
1165 C-O stretch, COH bend 
1130 C-C asymmetric stretch 

1100, 1094, 1081 PO2
- symmetric stretch (nucleic acids) 

1065 Chain C-C 
1056 RNA ribose C-O vibration 
1003 Phenylalanine (ring-breathing) 
967 C-C and C-N stretch PO3

2- stretch (DNA) 
957 CH3 deformation (lipid, protein) 
936 C-C residue α-helix 
921 C-C stretch proline 
898 C-C stretch residue 
870 C-DNA 
853 Ring breathing Tyr – C-C stretch proline 

828, 833 Out of plane breathing Tyr; PO2
- asymmetric stretch DNA (B-form) 

807 A-DNA 
786 DNA – RNA (PO2

-) symmetric stretching 
746 Thymine 
727 Adenine 

Table 1. Peak assignments derived from Krishna et al [37], Nijssen et al [38], Synytsya et al [39], Edwards and 

Carter [40], and Puppels et al [41] (and references therein) 
 

2.3.2 FTIR Spectroscopic Measurements 

 

FTIRM was performed using a Perkin Elmer GX-II spectrometer. The system is equipped 

with a Mid-infrared source with mid-infrared and far-infrared beam splitters that allow 

spectroscopic measurements of wavenumber shifts in the range 7000 to 50cm-1 with a 

maximum resolution of 0.3 cm-1.  The system is also equipped with a microscope attachment 

containing a x 40 objective, and is configured with the AutoIMAGE microscope system that 
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can operate in transmission or reflectance modes. All microscope operations including 

adjustments to aperture, focus and illumination are fully automated and controlled from an 

attached PC. The system includes a built-in 35W tungsten halogen illuminator, a motorised 

stage and a CCD video camera. The FTIRM measurements reported here utilised aperture 

sizes of 100 x 100 μm, spectral resolution of 4 cm-1, with 64 scans per spectrum. All spectra 

were acquired in reflection mode, effectively a double transmission after reflection from the 

broadband MirrIR substrate, with 250 spectra recorded from each sample. The final baseline 

corrected spectrum from each sample was an average of each of these measurements. IR band 

assignments as shown in table 2 were employed throughout the study. 

 

 

Wavenumber (cm-1) Assignment 
3328 Amide A (ν -N-H), proteins 
3129  Amide B (ν -N-H), proteins 
3015 ν =C-H, lipids 
2960 ν as -CH3, lipids proteins 
2920 ν as -CH3, lipids proteins 
2875 ν s -CH3, lipids proteins 
2850 ν s –CH2, lipids proteins 

1720-1745 ν –C=O, lipids (esters) 
1710-1716 ν as –C=O, RNA (esters) 
1705-1690 ν as –C=O, RNA, DNA 

1654 Amide I ν -C=O (80%), ν - C-N (10%),  δ -N-H (10%), α-helix 
1630-1640 Amide I ν -C=O (80%), ν - C-N (10%),  δ -N-H (10%), β-structure 
1610, 1578 ν -C4-C5, ν -C=N, imidazole ring, DNA, RNA 

1515 Aromatic tyrosine ring (Lasch et al) 
1540-1550 Amide II δ -N-H (60%), ν - C-N (40%), α-helix 

1530 Amide II δ -N-H (60%), ν - C-N (40%), β-structure 
1467 δ –CH2 lipids, proteins 
1455 δ as –CH3 / -CH2 scissoring lipids, proteins 

1370-1400 ν -COO-, δ s –CH3 lipids, proteins 
1330-1200 Amide III, proteins 
1230-1244 ν as –PO2

-, RNA, DNA 
1160, 1120 ν -C-O, RNA ribose 
1170, 1070 ν as, ν s –CO-O-C, lipids 
1090-1084 ν s –PO2

-, RNA, DNA 
1060, 1050 ν –C-O, deoxyribose/ribose DNA, RNA 

996 RNA stretch and bend ring of uracyl 
965 symmetric PO4

- stretch (DNA) and deoxyribose-phosphate skeletal motions 

Table 2. IR Peak assignments (for cellular spectra) derived from Gault et al, [42-44] and Zellmer et al [45] (and 

references therein). 
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3. Results and Discussion 

3.1 Fluorescence/Absorbance Assays 

The results of fluorescence and absorbance measurements of cellular proliferation, viability 

and total protein content are presented in figures 2-4. All measurements have been normalised 

to the MirrIR control. Error bars depict the variability at one standard error on the mean of the 

measurements.  
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Figure 2. Alamar Blue Fluorescence by substrate (Normalised to MirrIR Control for both MirrIR Substrate and 

Quartz Substrate) . 
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Figure 3. Neutral Red Fluorescence by substrate (Normalised to MirrIR Control for both MirrIR Substrate and 

Quartz Substrate). 
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Figure 4. Coomassie Blue Absorbance by substrate (Normalised to MirrIR Control for both MirrIR Substrate and 

Quartz Substrate). 
 

The general trend in the fluorescence measurements indicates that cellular proliferation, 

viability and protein content are enhanced by growth of HaCaT keratinocytes on gelatin, 

fibronectin and laminin. It appears that uncoated quartz induces a marked decrease in cellular 

proliferation and protein content. The enhancement in proliferation and viability is more 

pronounced when cells are grown on coated quartz substrates than MirrIR substrates, 

demonstrating that molecular conformation plays a role in cellular physiology post attachment 

as shown previously [19]. This also indicates that the Ag/SnO2 coating on the reflective 

surface of MirrIR substrates plays some role in promotion of cellular attachment, which may 

be as a result of surface roughness on the nanometer scale [46-48].  

 

The adhesion of cells to the extracellular matrix (ECM) is mediated by integrin binding [25]. 

Integrins are cell surface receptor proteins which bind the ECM to the cytoskeletal proteins 

within the cell, which subsequently stimulates the production and regulation of signalling 

proteins, such as protein kinase C and EGF [49, 50]. This ultimately results in increasing 
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proliferation and motility, which is also dependent on the charge distribution presented by the 

ECM coating molecule to the adhering cell [18-23, 25]. Ultimately the reaction of the cell to 

such influences are complex, being the cumulative effect of the increased or decreased 

regulation of a number of stimulatory pathways in the cell, with the end physiological change 

in any given cell being dependent on the cell and substrate ECM [50, 51]. It has been shown 

that adhesion of epithelial keratinocytes to fibronectin, collagen I and laminin promotes the 

activation of EGFR, although this effect can be sustained for various periods of time 

depending on the ECM molecule [50]. Bearing in mind that this effect is augmented by the 

conformation of the ECM molecule and its surface charge distribution, it is possible to 

suggest that the results of the present work (figure 2) indicate increased sustained production 

of signalling proteins resulting in increased proliferation of keratinocytes cultured on 

fibronectin, laminin and gelatin coated quartz slides, but only MirrIR slides coated with 

laminin produce significant changes in keratinocyte proliferation relative to the control. 

Figure 3 suggests that significant increases in cellular viability, relative to the control, are 

observed in keratinocytes grown on quartz coated with laminin and gelatin, but only 

significant increases in viability are observed when keratinocytes are grown on gelatin coated 

MirrIR slides. Taken together, both these results suggest that a coating such as gelatin 

provides an ECM that maintains similar proliferation effects on both quartz and MirrIR 

substrates, while increasing viability, which may be desirable for long-term cultures. 

Increases in protein content (which are seen as the result of increases in proliferation [6,8 and 

references therein]) shown in figure 4 may be normalised for spectroscopic purposes by 

normalising spectra to the Amide I band and/or the CH peak at 2939 cm-1 (in the case of 

Raman spectra) and 3328 cm-1 (in the case of FTIR spectra). 

 

Although the measurements here concentrate on one adherent cell line (HaCaT keratinocyte), 

the adherent effects likely to occur in other cell lines can be speculated from existing research. 

It is known that the chemistry of the substrate modifies integrin receptor binding and through 

this cellular proliferation, viability and motility. Doornaert et al [52] have examined the effect 

of collagen, fibronectin and laminin on human bronchial epithelial cell (HBE) proliferation  

where similar relationships between substrates have been found as have been observed in the 

present work. Keselowsky et al [16] have observed hydroxyapatite formation in MC3T3-E1 

osteoblasts on fibronectin coated self-assembled monolayers of alkanethiols with CH3, OH, 

COOH and NH2 terminals, using FTIR spectroscopy. They have found that surface chemistry 

can affect integrin binding of the cell to the substrate even when utilising the same coating 
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molecule. Sutherland et al [53] have also analysed proliferative effects in human 

keratinocytes, melanocytes, fibroblasts and myofibroblasts adherent to fibronectin, laminin, 

collagen and vitronectin with similar results to our work. 
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3.2 Spectroscopic Assays 

Figures 5 and 6 display the results of FTIRM and CRM measurements of HaCaT cells 

attached to gelatin coated substrates, spectra of the gelatin itself, and spectra of the coated 

substrate. Note that, as described previously, substrates for cell adhesion are coated by 

incubation with the solution of coating molecule for a period of time, and are then 

subsequently washed a number of times in PBS to remove the unbound molecule, as this can 

subsequently influence the cell behaviour by its presence in the extra-cellular medium. 

Gelatin has spectral features similar to the HaCaT cells because of its protein nature, but at the 

thicknesses employed here, these features are not visible. Similar results were observed in 

spectroscopic measurements of fibronectin and laminin coated substrates [54].  

 

Gazi et al [55] have recently demonstrated that formalin fixation preserves most effectively 

the subcellular structure within the cell observed by SRFTIR spectroscopy, while O Faolain et 

al [56] have shown that shifts of up to 10 cm-1 are observable in FTIR spectra of formalin-

fixed versus fresh tissue, with reduction in the intensity of the C=O band at 1398 cm-1. Other 

features associated with the presence of formalin within the Raman spectrum occur at 1041 

cm-1 and 1492 cm-1 and can indicate formalin contamination of the sample [57], while fixation 

has been observed to produce peaks at 1490 cm-1 and to reduce the Amide I peak at 1637 cm-1 

[56]. These features may occur as a result of protein unravelling or amide cross-linking 

induced by formalin fixation. No such features were observed in either our FTIR or Raman 

spectra indicating no formalin contamination in the cellular samples.  However, the effect of 

formalin on the protein Amide regions of the spectra, due to formalin-induced amide cross-

linking [57], has not yet been investigated in cellular species. 

 

The FTIR spectral features of the HaCaT cells display strong Amide A and Amide B 

vibrations in the high wavenumber regions (~ 3328 and 3129 cm-1 respectively) with strong 

phospholipid terminal -CH3 stretching vibrations (both symmetric in the region of 2875 cm-1 

and antisymmetric in the region of 2960 cm-1) also visible. The Raman spectral features in 

this region are also dominated by -CH3 and -CH2 stretching modes (between 2900 and 2983 

cm-1), with a weak Amide A vibration (in the region of 3070 cm-1) and -CH stretch (in the 

region of 2729 cm-1), and water contributions above 3070 cm-1. Moving to the fingerprint 

region, the FTIR spectra are strong in the Amide I (peaking at 1654 cm-1) Amide II (peaking 



at 1555 cm-1) and Amide III (region from at 1330 to 1200 cm-1) with lipid δ-CH2 and δ-CH3 

contributions (in the region from 1467 to 1455 cm-1) and –COO- stretching vibrations (in the 

region from 1370 to 1400 cm-1). These bands overlap to some extent in the lower 

wavenumber region with the –PO2
- stretching vibration (1090-1084 cm-1;1230-1244 cm-1), the 

C-O stretching vibration of RNA ribose (1160; 1120; 1060; 1050 cm-1), and the symmetric 

and anstisymmetric stretch of –CO-O-C (lipid, ~1170 and ~1120 cm-1).  

 

Raman spectra of HaCaT cells again display strong Amide I (~1681 cm-1), Adenine/Guanine 

in plane ring modes superimposed on CH/CH2 vibrations (~1457 cm-1) and Amide III 

vibrations (~1230-1260 cm-1). Lipid contributions from -CH2 and –CH3 stretching (1308-1398 

cm-1) are strong, as are those from –PO2
- residues of DNA/RNA (1056-1111, 863-935 cm-1 

and 783-847 cm-1) and Phenylalanine ring breathing modes (1003 cm-1). 

 
Figure 5. FTIR spectra of gelatin coated MirrIR slide with measured FTIR spectrum of gelatin and that of 

HaCaT cells grown on gelatin.  

 17



 
Figure 6. Raman spectra of gelatin coated quartz slide with measured Raman spectrum of gelatin and that of 

HaCaT cells grown on gelatin.  

 

 

Results of spectroscopic measurements (in the fingerprint region) of HaCaT cells on coated 

spectroscopic substrates are shown in figures 7-9(b). Raman spectra were normalised to the 

CH band intensity at 2939 cm-1 (not shown). FTIR spectra are averages of 250 measurements, 

with normalisation to the Amide I band absorbance at 1654 cm-1.  
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Figure 7. Raman spectra of HaCaT cells on coated spectroscopic substrates in the fingerprint region (700 to 1800 

cm-1). 
 

 
Figure 8. FTIR spectra of HaCaT cells on coated spectroscopic substrates in the fingerprint region (920 to 1770 

cm-1). 
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Figure 9(a). First Derivative FTIR spectra of HaCaT cells on coated spectroscopic substrates in the fingerprint region (920-

1300 cm-1) 

 

 
Figure 9(b). First Derivative FTIR spectra of HaCaT cells on coated spectroscopic substrates in the CH region (2690-3500 

cm-1). 
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The first derivative FTIR spectra exhibit shape changes in the HaCaT cell spectra in regions 

of the spectrum associated with nucleic acid, lipid and protein expression (respectively from 

950 to 1090 cm-1, at 1070 and 1170 cm-1, and from 1200-1330 cm-1, with other changes in the 

lipid and protein regions from 1370-1467 cm-1). Such spectral changes have been seen 

recently in proliferating mammalian cells [6, 8]. The correlation between cell viability (NR 

fluorescence) and FTIR spectral changes in the HaCaT cells attached to different substrates 

was investigated using calculations of band integral ratios from the raw spectra. This 

correlation is depicted in figure 10 for FTIR spectral measurements (where in this, and all 

subsequent, plots of band integral ratios, a straight line is overlaid as a guide for the eye to the 

inferred correlation). The integral of absorbance between 2850 and 3015 cm-1 has been taken 

as an estimate of the total lipid –CH, –CH2 and –CH3 bond vibration content (in the CH 

region, termed ‘Lipid CH’ here), while the integral of absorbance between 3129 and 3328cm-1 

has been taken as an estimate of the total protein Amide A and B vibration content (also in the 

CH region, termed ‘Amide AB’ here), and the sum of the integrals of absorbance between 

1084 and 1090 cm-1 and between 1230 and 1240 cm-1 have been taken as an estimate of total –

PO2
- bond vibration content. There are some slight contributions from water in the IR spectra 

in the 3000-3500 cm-1 region, evident in figure 9(b), although these should be removed in the 

peak area ratio of Amide AB to Lipid CH. A correlation between both the ratio of lipid to 

PO2
- band areas and the ratio of lipid to Amide A and B band integrals was observed. This 

may signify that the integrity of lipid, protein, and nucleic acid backbone are crucial to cell 

viability.  

 

It has been found by Mourant et al [8], by means of fitting base sets to cellular FTIR spectra, 

that the ratio of RNA to lipid content and the ratio of protein to lipid content increase with 

increasing cellular proliferation. In the present study, RNA content was estimated using the 

integral of absorbance from 1710-1716 cm-1 (symmetric stretch of C=O in RNA). Lipid 

content was estimated using an integral of the absorbance from 1370 to 1400 cm-1 (COO- 

stretch and –CH3 symmetric bending in protein and lipids), and Amide I, Amide II and Amide 

III cumulative contributions were estimated using the integral of absorbance from 1630-1654 

cm-1, 1530-1550 cm-1 and 1200-1330 cm-1 respectively. ‘Total Protein’ was computed using a 

summation of the Amide I, II and III band integrals. These integrals were compared to 

quantitative estimates of cellular proliferative capacity from normalised AB fluorescence and 

are depicted in figure 11. The ratios for each of the absorbance integrals increase with 

increasing cellular proliferation as found by Mourant et al [8], with the most significant 
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association between proliferation and the total protein to lipid content. Linear fits have been 

applied to each set of data as a means of examining the relative degree of association between 

each of the metrics and cellular proliferation, although in the case of both the Amide I to lipid 

ratio and the RNA to lipid ratio, this is better served by a 2nd order polynomial fit. It is 

difficult to ascertain ratios indicative of RNA synthesis (both in FTIR and Raman spectra) 

because there are so many overlapping bands in this region of the spectrum. This may account 

for the large error bars seen in the spectral area ratios of RNA vs lipid. 

 

Raman spectral changes are also observable in those parts of the fingerprint region associated 

with DNA and RNA PO2
- (862-915 cm-1; 1056-1100 cm-1; 1212-1266), protein (Amide I, 

1657-1690 cm-1; Amide III, 1212-1266) and lipid (1397-1452 cm-1). Increases in the regions 

associated with DNA and RNA, and protein, with decreases in those regions associated with 

lipid, were observed in cells with increased proliferation (figure 7), which have been noted 

previously [8]. Quantification of the correlation between the spectra and fluorescence 

measurements are shown in figures 12 and 13. It should be noted that the control points in 

each graph in each figure will overlap at 1, and that the SE bars in the direction of each of the 

peak area integrals is not shown (although these are in all cases less than 5% in either 

direction). The lipid (estimated from the integral from 2870 to 2975 cm-1) to Amide AB 

(estimated from the integral from 3048 to 3087 cm-1) and –PO2
- (estimated from the integral 

of intensity from 862-915 cm-1) to Lipid band integral ratios (1396-1452 cm-1) were found to 

increase with increasing NR fluorescence (cell viability), as demonstrated in figure 12. A 

correlation was also observed between the total protein (estimated via the summation of the 

area of the Amide I and Amide III band integrals) to lipid ratio, the –PO2
- to Amide I ratio, the 

–PO2
- (due to RNA and estimated from the integral from 783 to 848 cm-1) to lipid (1397-1452 

cm-1) ratio and the cellular proliferation as measured by AB fluorescence (figure 13). Similar 

trends have been observed previously by Short et al [6], where increases in protein and 

decreases in lipid were observed in proliferating cells, with decreases in RNA and increases in 

DNA between plateau and exponential phase cells. It is difficult to elucidate spectral changes 

associated with proliferative effects from Raman spectra, using peak area ratios, due to the 

large degree of spectral overlap between subcomponents (nucleic acid, protein, lipid etc.) 

within the spectrum [8]. This difficulty may be lessened through careful choice of spectral 

intervals for integration, as was the approach adopted here. The spectral changes observed 

here are consistent with those previously observed in experiments utilising spectral 

decomposition [8], and as such support the approach adopted here. 



 

 
Figure 10.Correlation of various FTIR band integrals (as described in the text) to NR fluorescence (cell viability). All 

measurements are normalised to the corresponding control measurement. 
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Figure 11. Correlation of various FTIR band integrals (as described in the text) to AB fluorescence (proliferative capacity). 

All measurements are normalised to the corresponding control measurement. 
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Figure 12. Correlation of various Raman band integrals (as described in the text) to NR fluorescence (cell viability) All 

measurements are normalised to the corresponding control measurement. 

 
Figure 13. Correlation of various Raman band integrals (as described in the text) to AB fluorescence (proliferative capacity) 

All measurements are normalised to the corresponding control measurement.
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Conclusion 
Cell culture for spectroscopic measurements has not previously been performed with 

correction for the effects cell attachment has on cellular physiology. Recently it has been 

demonstrated in the literature that these effects can be expressed in the cell at the level of 

genomic regulation, thus contributing to very fundamental changes in cellular physiology, 

ultimately resulting in unknown adjustments to cellular proliferation, motility and, in some 

cases, phenotype [17-23]. In this work we have demonstrated that measurements of cellular 

proliferation and viability on coated spectroscopic substrates can be correlated with spectral 

changes induced by adjustments to cell physiology when cultured on the different coatings. 

These measurements demonstrate that the interaction of the cell with coated spectroscopic 

substrates can influence the spectroscopic measurement made using vibrational spectroscopy. 

Ultimately this implies that spectroscopic measurements made using Raman and IR 

spectroscopy, if they are to be used together to characterize cellular interaction with toxic 

agents, etc., should utilise a coating, such as gelatin, which harmonises the cell interaction 

with the spectroscopic substrate, such that the measurements are intercomparable and 

complementary. The measurements also demonstrate that vibrational spectroscopy can probe 

the results of cellular interactions occuring at genomic level, which can be significant to the 

development of these modalities in the future.  
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