

Dublin Institute of Technology ARROW@DIT

Articles School of Mathematics

1978-01-01

Essentially-rigid families of Abelian p-Groups

Brendan Goldsmith Dublin Institute of Technology, brendan.goldsmith@dit.ie

Follow this and additional works at: http://arrow.dit.ie/scschmatart

Part of the Mathematics Commons

Recommended Citation

Goldsmith, Brendan: Essentially-rigid families of Abelian p-Groups. Journal of the London Mathematical Society, 18 (1978, pp.70-74.

This Article is brought to you for free and open access by the School of Mathematics at ARROW@DIT. It has been accepted for inclusion in Articles by an authorized administrator of ARROW@DIT. For more information, please contact yvonne.desmond@dit.ie, arrow.admin@dit.ie, brian.widdis@dit.ie.

ESSENTIALLY-RIGID FAMILIES OF ABELIAN p-GROUPS

ESSENTIALLY-RIGID FAMILIES OF ABELIAN p-GROUPS

B. GOLDSMITH

Introduction

In a recent paper Shelah [9] has established the existence of a rigid-like family of 2^{λ} separable p-groups each of cardinality λ , where λ is a strong limit cardinal of cofinality $> \aleph_0$, that is a family such that (i) the endomorphism ring of each group is the split extension of the p-adic integers by the ideal of small endomorphisms and (ii) every homomorphism between different members of the family is small. (See Pierce [8] or Fuchs [3] for the concept of small homomorphisms.) Then assuming G.C.H. this leaves open the following problem:—

If $\mu = \lambda^{\aleph_0} = 2^{\lambda}$, is there a rigid-like family of 2^{μ} separable *p*-groups, each of cardinality μ ?

This problem seems to be extremely difficult and in this paper we derive a weaker result and in so doing obtain a partial answer to Fuchs [4; Problem 53]. We remark that our technique is mainly group-theoretic and uses a minimal number of notions from set theory.

Finally all groups are additively written abelian groups and we refer to Fuchs [3] and [4] for standard results and notation; for set theoretic concepts we refer to Jech [5].

1. Essentially-rigid families of p-groups

Let λ be an infinite cardinal and suppose \overline{B} is the torsion-completion of the group B which is a standard p-group of final rank λ . Recall that if G is a reduced p-group containing B as a basic subgroup then we can regard G as a pure subgroup of \overline{B} and then any endomorphism ϕ of G will have a unique extension $\overline{\phi}$ to \overline{B} . Thus we may, and do, regard endomorphisms of G as endomorphisms of \overline{B} . Let E(X) denote the endomorphism ring of any group X.

Define the ideal of inessential endomorphisms of G by $I(G) = \{\phi \in E(G) | \overline{B}\overline{\phi} \leq G\}$. Clearly I(G) is a 2-sided ideal of E(G) and a left ideal of $E(\overline{B})$.

THEOREM 1.1. For any infinite cardinal λ , there exists a group G, with basic subgroups of final rank λ , such that E(G) is the split extension of the p-adic integers, Q_p^* , by the ideal I(G), $E(G) = Q_p^* \oplus I(G)$.

Proof. Let B be a standard basic group of final rank λ and choose G such that $B \leq G \leq \overline{B}$ and $\overline{B}/G \cong Z(p^{\infty})$. Then G has rank λ^{\aleph_0} but has a basic subgroup of final rank λ . We show $E(G) = Q_p^* \oplus I(G)$.

Now we have the exact sequence

$$0 \to G \to \overline{B} \to Z(p^\infty) \to 0$$

which yields

$$0 \to \operatorname{Hom}(\overline{B}, G) \to \operatorname{Hom}(G, G) \to P \operatorname{ext}(Z(p^{\infty}), G)$$
$$0 \to \operatorname{Hom}(Z(p^{\infty}), Z(p^{\infty})) \to P \operatorname{ext}(Z(p^{\infty}), G), \to 0.$$

JUPS

So $P \operatorname{ext}(Z(p^{\infty}), G)$ is a cyclic Q_p^* -module and since the image of $\operatorname{Hom}(\overline{B}, G)$ in $\operatorname{Hom}(G, G)$ is just I(G), we have that $E(G) = Q_p^* + I(G)$. Since $Q_p^* \cap I(G) = 0$, the extension is a ring split extension.

LEMMA 1.2 (Leptin [6]). If G and H are pure subgroups of \overline{B} containing B then $G \cong H$ if and only if there is an automorphism θ of \overline{B} with $G\theta = H$.

Definition. A group G is said to be a maximal pure subgroup of \overline{B} if G is a pure subgroup of \overline{B} containing B and $\overline{B}/G \cong Z(p^{\infty})$.

Lemma 1.3. If λ is an infinite cardinal such that $\mu = \lambda^{\aleph_0} = 2^{\lambda}$, then there are 2^{μ} non-isomorphic maximal pure subgroups of \overline{B} , the torsion-completion of the standard basic group B of final rank λ .

Proof. Since \overline{B} has cardinality $\lambda^{\aleph_0} = \mu$ we have that $\overline{B}/B \cong \bigoplus_{\mu} Z(p^{\infty})$. Now a maximal pure subgroup G of \overline{B} corresponds to a divisible subgroup of corank 1 in this quotient and so there are clearly 2^{μ} such groups. But by Lemma 1.2 any two maximal pure subgroups will be isomorphic only if there is an automorphism θ of \overline{B} mapping one to the other. However any automorphism of \overline{B} is determined by its action on B, of cardinality λ , and so there are at most μ automorphisms of \overline{B} . Hence there are 2^{μ} non-isomorphic maximal pure subgroups of \overline{B} .

For the rest of this section suppose that λ is an infinite cardinal such that $\lambda^{\aleph 0} = 2^{\lambda} = \mu$ and let \overline{B} denote the torsion-completion of the standard basic group B of final rank λ .

Definition. If G_j and G_k are maximal pure subgroups of \overline{B} , let

$$I_i(G_k) = \{ \phi \in \text{Hom } (G_j, G_k) | \overline{B}\overline{\phi} \leqslant G_k \}.$$

LEMMA 1.4. For an arbitrary maximal pure subgroup G of \overline{B} , there are at most μ maximal pure subgroups G_k of \overline{B} such that $\operatorname{Hom}(G_k, G) \neq I_k(G)$.

Proof. Suppose there exists a family $\{G_k\}_{k \in K}$ of more than μ maximal pure subgroups of \overline{B} with Hom $(G_k, G) \neq I_k(G)$. Then we can construct a family $\{\overline{\phi}_k\}_{k \in K}$ of endomorphisms of \overline{B} such that ϕ_k does not belong to $I_k(G)$. Since $E(\overline{B})$ has cardinality μ and K has cardinality greater than μ , we must have $\overline{\phi}_k = \overline{\phi}_j$ for some different k, j in K. But then

$$\overline{B}\overline{\phi}_k = (G_j + G_k)\overline{\phi}_k \leqslant G_j\overline{\phi}_k + G_k\overline{\phi}_k = G$$

which is contrary to our choice of ϕ_k .

Lemma 1.5. If G_0 is an arbitrary maximal pure subgroup of \overline{B} then there are at most μ maximal pure subgroups G_k such that $\operatorname{Hom}(G_0, G_k) \neq I_0(G_k)$.

Proof. Suppose there exists a family $\{G_k\}_{k \in K}$, where $|K| > \mu$, of maximal pure subgroups of \overline{B} such that $\operatorname{Hom}(G_0, G_k) \neq I_0(G_k)$. Then we have a family $\{\overline{\phi}_k\}_{k \in K}$ of endomorphisms of \overline{B} such that $\phi_k \notin I_0(G_k)$. But then $\overline{\phi}_k = \overline{\phi}_j$ for $k, j \in K'$ with $|K'| > \mu$. So $G_0 \phi_k \leqslant \bigcap_{j \in K'} G_j$ for $k \in K'$. Let $G_k = \langle H_k, x_k \rangle_*$ where $H_k \geqslant \bigcap_{j \in K'} G_j$

mily of inal of roup is ms and . (See

each of

suming

weaker

]. We

nber of

Fuchs refer to

group B p-group \overline{B} and ve may, note the

 $\overline{\phi} \leqslant G$ }.

th basic integers,

ich that of final

and let π_k denote the projection of \overline{B} onto $\langle x_k \rangle_*$. Set $\overline{\phi}_k' = \overline{\phi}_k + \pi_k$. Then $\phi_k' \in \operatorname{Hom}(G_0, G_k)$ but $\phi_k' \notin I_0(G_k)$. But since there are more than μ such x_k 's we have exhibited more than μ distinct endomorphisms $\overline{\phi}_k'$ of \overline{B} —a contradiction.

Definition. A family $\{G_j\}_{j\in J}$ of separable p-groups is said to be essentially-rigid if

$$\operatorname{Hom}(G_j, G_k) = \begin{cases} Q_p^* \oplus I(G_j) & j = k \\ I_j(G_k) & j \neq k. \end{cases}$$

THEOREM 1.6. If λ is an infinite cardinal such that $\mu = \lambda^{\aleph_0} = 2^{\lambda}$, then there exists an essentially-rigid family of 2^{μ} groups, each of cardinality μ .

Proof. Let ε denote the least ordinal of cardinality 2^{μ} . We construct a family $\{G_{\alpha}\}_{\alpha < \varepsilon}$ inductively. For G_0 choose any maximal pure subgroup of \overline{B} , the torsion-completion of the standard basic group of final rank λ . Now suppose the family $\{G_{\alpha}\}_{\alpha < \beta}$ has been constructed where $0 < \beta < \varepsilon$.

For each $\alpha < \beta$ consider the set of maximal pure subgroups G_i of \overline{B} such that Hom $(G_{\alpha}, G_i) \neq I_{\alpha}(G_i)$ or Hom $(G_i, G_{\alpha}) \neq I_i(G_{\alpha})$. By Lemmas 1.4 and 1.5 we know there are at most μ indices i for which this is true. By the minimality of ε we know that the set of G_i having this property for any α less than β contains less than 2^{μ} members. So by Lemma 1.3 there exists a maximal pure subgroup G^1 of \overline{B} not in this set. Set $G_{\beta} = G^1$. Then it follows easily that $\{G_{\alpha}\}_{\alpha \leq \beta}$ is essentially-rigid. The construction is completed by transfinite induction. The proof is then completed by the observation that each maximal pure subgroup of \overline{B} has cardinality $= |\overline{B}| = \mu$.

2. Prescribing the ideal of inessential endomorphisms

The results in $\S 1$ imposed very little restriction on the ideal over which the endomorphism ring of a maximal pure subgroup of \overline{B} splits. In this section we show that this ideal can be restricted somewhat. Ideally we would like to show that splitting can occur over the ideal of small endomorphisms; however, this seems to be very difficult. We offer instead a weaker splitting result.

Definition. If G_j and G_k are separable p-groups with a common basic subgroup B, then we define, for an infinite cardinal λ ,

$$I_i^{\lambda}(G_k) = \{ \phi \in \text{Hom } (G_i, G_k) | \overline{B} \overline{\phi} \leqslant G_k \text{ and } | \overline{B} \overline{\phi} | \leqslant \lambda \}.$$

When $G_j = G_k$ we simply write $I^{\lambda}(G_k)$.

THEOREM 2.1. If λ is an infinite cardinal such that $\mu = \lambda^{\aleph_0} = 2^{\lambda}$, then there exists a family $\{G_j\}$ of 2^{μ} separable p-groups, each of cardinality μ , having a common basic subgroup B of cardinality λ and such that

$$\operatorname{Hom}(G_j, G_k) = \begin{cases} Q_p^* \oplus I^{\lambda}(G_k) & j = k \\ I_i^{\lambda}(G_k) & j \neq k. \end{cases}$$

Proof. Let

$$B = \bigoplus_{n < \omega} B_n$$
 where $B_n = \bigoplus_{\lambda} Z(p^n)$.

Let \overline{B} denote the torsion-completion of B. Then \overline{B}/B is a divisible p-group of rank μ . Let $\{W_k\}_{k\in K}$ denote the set of endomorphic images of \overline{B} which have rank μ . Since $|E(\overline{B})| = \mu$, there are at most μ such images, i.e. $|K| \leq \mu$. Let W_k^* denote a minimal pure subgroup of $(W_k + B)/B$. Then $\{W_k^*[p]\}_{k\in K}$ is a family of at most μ subspaces of the vector space $(\overline{B}/B)[p]$. Moreover, by choice of W_k , each of these subspaces has dimension μ . Then appealing to Lemma 2.2 below we see that there exist 2^{μ} maximal subspaces of $(\overline{B}/B)[p]$ which contain no $W_k^*[p]$. Hence we can find 2^{μ} maximal pure subgroups of \overline{B} , each containing B, such that no W_k is contained in any of them. Then using Lemmas 1.4 and 1.5 we can refine this family to a family $\{G_j\}$ of 2^{μ} maximal pure subgroups such that no W_k is contained in a G_j and the family is essentially rigid.

To obtain the desired result we now observe that the basic subgroup of an image of \overline{B} in a G_j has rank χ less than λ or rank λ . Since the rank of an image of \overline{B} in a G_j cannot be λ^{\aleph_0} , any image of \overline{B} in a G_j has rank at most χ^{\aleph_0} or λ . But if χ is less than λ then χ^{\aleph_0} is less than μ , hence λ has cofinality \aleph_0 and then χ less than λ implies that χ^{\aleph_0} is also less than λ . Thus in either case any image of \overline{B} in a G_j has rank at most λ . The proof is completed by

Lemma 2.2. Let V be a vector space of dimension α over a field F, where α is an infinite cardinal. Let $\{W_i\}_{i<\alpha}$ be a family of subspaces each of dimension α . Then there exist 2^{α} subspaces U_j each of co-dimension 1 such that no W_i is contained in a U_j .

Proof. This is a standard set-theoretic extension of a well-known result (see [1; Lemma 5.2]).

COROLLARY 2.3. If λ is an infinite cardinal such that $\mu = \lambda^{\aleph_0} = 2^{\lambda}$, then there exist 2^{μ} separable p-groups G_i , each of rank μ , with basic subgroups of final rank λ , such that every homomorphism between different members of the family has image of cardinality at most λ .

Clearly the homomorphisms between different members of the above family are "small" (but not in the technical sense of Pierce). This gives a partial answer to Fuchs [4; Problem 53]. A similar result has been obtained by Shelah [9] but by entirely different methods.

COROLLARY 2.4. There exists a family of 2^c , where $c = 2^{\aleph_0}$, separable p-groups $\{G_j\}$ such that $E(G_j) = Q_p^* \oplus E_s(G_j)$ for each j and, moreover, every homomorphism between distinct members of the family is small.

Proof. Clearly $\lambda = \aleph_0$ satisfies the conditions of Theorem 2.1. But, by a result of Megibben [7], if $\theta : \overline{B} \to G_j$ is not small then G_j contains an unbounded torsion-complete group. Since such a group must have rank 2^{\aleph_0} we deduce from the construction of the G_j 's in Theorem 2.1, that no such group can be contained in any of the G_j . Thus every homomorphism from G_j to G_k $(j \neq k)$ is small and the result follows from Theorem 2.1.

We remark that the members of such a family are essentially indecomposable and that this answers a problem raised by Shelah at the end of his paper [9]. We note however that such a family had been previously constructed by Corner [2].

Acknowledgment. This paper was written under the supervision of Dr. A. L. S. Corner; I would like to express my appreciation of his encouragement and help.

References

- 1. R. A. Beaumont and R. S. Pierce, "Some invariants of p-groups", Michigan Math. J., 11 (1964) 137-149.
- 2. A. L. S. Corner, "On endomorphism rings of primary abelian groups", Quart. J. Math., 20 (1969), 277-296.
- 3. L. Fuchs, Infinite abelian groups, Vol. I (Academic Press, New York and London, 1970).
- 4. L. Fuchs, Infinite abelian groups, Vol. II (Academic Press, New York and London, 1973).
- 5. T. J. Jech, Lectures in set theory, Lecture Notes in Mathematics, Vol. 217 (Springer-Verlag, Berlin, 1971).
- 6. H. Leptin, "Zur Theorie der überabzählbaren abelschen p-Gruppen", Abh. Math. Sem. Univ.
- Hamburg, 24 (1960), 79–90.

 7. C. Megibben, "Large subgroups and small homomorphisms", Michigan Math. J., 13 (1966), 153-160.
- 8. R. S. Pierce, "Homomorphisms of primary abelian groups", Topics in Abelian Groups (Ed.
- J. M. Irwin and E. A. Walker), 215-310 (Chicago, Illinois, 1963).

 9. S. Shelah, "Existence of rigid-like families of abelian p-groups", Model Theory and Algebra, Lecture Notes in Mathematics, Vol. 498 (Ed. D. H. Saracino and V. B. Weispfenning), 384–402 (Springer-Verlag, Berlin, 1975).

College of Technology, Kevin Street, Dublin 8, Ireland.

Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4, Ireland.