

Photogrammetry, Remote Sensing, and Spatial Information Sciences, Vol. XXXV, Part
B3, pp. 231-236, Istanbul, Turkey.

Hatger, C., Brenner, C., (2003) “Extraction of Road Geometry Parameters from Laser
Scanning and Existing Databases’, Proceedings ISPRS Workshop 3-D Reconstruction

from Laser Scanner and InSAR Data, 8-10 October 2003, Dresden, Germany

Haala, N., Brenner, C., (1999) ‘Extraction of Buildings and Trees in Urban
Environments’, ISPRS Journal of Photogrammeiry and Remote Sensing, Vol 54, pp.
130-137.

Hofmann, A.D., Maas, H-G., Streilein, A., (2002) ‘Knowledge Based Building
Detection Based on Laser Scanner Data and Topographic Map Information’,
Proceedings, ISPRS Symposium Photogrammelric Computer Vision, 9-13 Sept, Graz,

Ausltria.

Hoffimann, A.D., Maas, H-G., Streilein, A., (2003) ‘Derivation Of Roof Types by
Cluster Analysis in Parameter Spaces of Airborne Laserscanner Point Clouds’,
Proceesings, ISPRS Workshop 3-D Reconstruction from Laser Scanner and InSAR
Data, 8-10 Qctober 2003, Dresden, Germany.

Hu, X., Tao, C.V., Hu, Y., (2003) ‘Automatic Road Extraction from Dense Urban
Area by Integrated Processing of High Resolution Imagery and Lidar Data’,
Proceedings ISPRS Workshop 3-D Reconstruction from Laser Scanner and InSAR
Data, 8-10 October 2003, Dresden, Germany.

Katzebeisser, R., (2003a) ‘About The Calibration of Lidar Sensors’, ISPRS
Workshop, 3-D Reconstruction from Airborne Laser-Scanner and InSAR, 8-10

October 2003, Dresden, Germany.

Katzenbeisser, R., (2003b) ‘Airborne Laser Scanning a Comparison with Terrestrial

Surveying and Photogrammetry’, Technical Note TopoSys GmbH.

119

Lemmens, Mathias.JP.M., (1997) ‘Accurate Height Information from Airborne

Laser-Altimetry’, Proceedings of the 1997 International Geoscience and Remote

Sensing Symposiunt

Lohani, B., Mason, D. C., (2001) ‘Application of Airborne Scanning Laser Altimetry
to the Study of Tidal Channel Geomorphology®, ISPRS Journal of Photogranunetry
and Remote Sensing, Vol 56, pp. 100-120.

Maas, H-G., (2002) ° Planimetric and Height Accuracy of Airborne Laserscanner
Data: User Requirements and System Performance’, Proceedings 49,

Photogrammeltric Week (Ed. D. Fritsch), Wichmann Verlag, pp. 117-12

Maas, H-G., Vosselman, G., (1999) ‘Two Algorithms for Extracting Building Models
from Raw Laser Altimetry Data’, ISPRS Journal of Photogrammetry & Remofe
Sensing, Vol 54, pp. 153-163

Morgan, M., Habib, A., (2002) ‘Interpolation of Lidar Data and Automatic Building
Extraction’, Proceedings ACSM-ASPRS Annual Conference 2002,

Morin, K. W., (2002) ‘Calibration of Airborne Laser Scanners’, Thesis for Degree of
Master of Science, Nov 2002, University of Calgary, Alberta, Canada

Mostafa, M., Huiton, 1., Ried, B., Hill, R., (2001) ‘GPS/IMU Products the Applanix
Approach’, Photogrammetric Week 2001 pp. 63-83.

Rottensteiner, F., (2002) ‘Automatic Extraction of Buildings From Lidar and Aerial
Images’, Symposium on Geospatial Theory, Processing and Applications, Ottawa,

Canada.

Toth, C.K., Grejner-Brzezinska, D.A, (2000) ‘Complimentarity of Lidar and Stereo
Imagery For Enhanced Surface Extraction’, Infernational Archives of

Photogrammetry and Remote Sensing, Amsterdam, Vol XXX111, Part B3,

120

Toth, C.K, Grejner-Brezezinska, D.A., Moafipoor, S., (2004) ‘Precise Vehicle
Topology and Road Surface Modeling Derived from Lidar Data’, ION 60" Annual
Meeting, 7-9 June 2004, Dayton, Ohio, U.S.A.

Vosselman, G., Maas, H-G., (2001) ‘Adjustment and Filtering of Raw Laser
Altimetry Data', Proceedings OFEPE workshop on Airborne Laserscanning and
Interferometric SAR for Detailed Digital FElevation Models, 1-3 March 2001,
Stockholm, Sweden.

Wehr, A., Lohr, U, (1999) ‘Airborne Laser Scanning an Introduction and Overview’,

ISPRS Journal of Photogrammetry and Remote Sensing, Vol 54, pp. 68-82.
Zhan, ., Molenaar, M., Tempfli, K., (2005) *Building Extraction from Laser Data By

Reasoning on Image Segments in Elevation Slices’, Proceedings, ISPRS Laser

Scanning 2005, 12-14 September, Enschede, Netherlands.

121

Appendix A

MATLAB

Matlab (MATrix LABorotory) is a widely used scientific and technical programming
language. The main attraction for using it in this project were some of the built in
functions that lent themselves very well to the some of the key areas in creating the

cross sections. Most notable were the following.

Delaunay Function

It was necessary to structure the scattered ALS point cloud before cross sections could
be taken from it. The inputs to the routine are a list of the 3D coordinates on which to
base the triangulation. The output is a very good visual of the surface, but
unfortunately it does not automatically coordinate each triangle. What it does provide
is a set of indexes for each triangle vertex into the original coordinate file inputted. To
analyse the triangulation it is essential to have the coordinates of all three vertices so a

routine was developed to do this (avectorisetricoordinates.m)

Tsearch Function

Given the coordinates of a point this function finds its bounding triangle in the
Delaunay triangulation. It requires the output from the Delaunay, the coordinates on
which the Delaunay is based, and the coordinates of the point. The result is an index
into the output from the Delaunay and needs to be used in conjunction with the output
from avectorisetricoordinates.m to get the coordinates of the triangle. Some problems
were encountered with this program and an alternative was sourced via the Internet.
The program tsearchsafe.m by Dr Charles R. Denham, Zydeco, would appear to be
more reliable. This program can be downloaded and stored in the directory
C:\matlab\toolbox\matlab\polyfun it can then be accessed like any other Matlab
function

(http://woodshole.er.usgs.gov/staffpages/cdenhany/public html/snackbar/snackbar.ht

ml)

122

Find Function

This function is used to find a particular value or a range of values in an array. It is
used for instance to create the triangle groups. The coordinates of all the Delaunay
triangles is held in a matrix, using the find function this matrix is searched for
coordinates that match any of the vertices of the seed triangle. Matches are extracted

to form a small group of triangles, a surface patch.

Diff Function

This function is used to get the height difference between adjacent points in each of

the cross sections.

Polvfit and Polyval Function

These functions were used together to perform the Least Squares regression. Taking

for example a second order polynomial (Equation 1) fitted to pairs of data (x;,yi)

y=c x4 c,x + ¢, (Equation 1)

the task is to find the three cocfficients that minimise the sum of the squared crrors

(Equation 2)

"

e=> (y,—ax —c,x, —c3)’ (Equation 2)
i=]

The coefficients “¢”’ can be found using the matrix operation:

C=(A DAY (Equation 3)
Matlab solves this matrix equation using the polyfit function. It requires three inputs,
an array of independent variables, dependant variables and an integer value that

signifies the degree of curve to be fitted (e.g. a 2= second order polynomial, and a 1=

linear). The result of the polyfit function is row containing the values of the

123

coefficients in descending orders of the powers of x. To solve for y (Equation 1) the
polyval function is used. It requires two inputs, the array of coeflicients from polyfit,

and the array of independent variable values (Biran & Breiner, 2002)

MATLAB PROGRAMS

For anyone wishing to usc the Matlab programs there are a few complications with
the data file inputs to some of the processes developed. These mainly stem from
timing differences in receiving the Lidar data and lack of expertise in programming
and in using Matlab. The data available at the start of the project had no return
intensities. Programming began with this data but provision should have been made in
the code for the eventual arrival of the intensity data. The net result is that, although
some data files should be common to programs, a certain amount of duplication was
required to overcome the problem. It is important that the processing sequence below

is accurately followed to insure that essential files are created.

¢ The Lidar point cloud {(with X.Y.Z and Intensity columns) is classified using
Terrascan and the point class “Ground” is saved as an X,Y,Z,] tab delimited

text file.

e The ground points file created above is reloaded into Terrascan and a region in

the vicinity of the road is selected using the Fence Tool.

e The points within the fence must now be saved as an X,Y,Z tab delimited text
file named “gridback.txt”, they must also be saved as an X,Y,Z,1 tab delimited

text file named “gstonesiintensity.txt”
e Run the program “adodelaunay.m” this program performs a Delaunay
Triangulation and stores the result in “triangles2.txt”. The result is an index

into the coordinate file on which the triangulation is based (gridback.txt)

e Run “avectorisetricoordinates.m”. This coordinates all the triangle vertices in

the triangulation. The output is stored in “tricoordinates.txt”

124

e Run “trapzerointjan.m”. The purpose of this program is to scan through the
file “gstonesiintensity.txt (created above in Terrascan) and replace any zero
value with a very small value (.001). A zero intensity value caused some
subsequent programs to crash so this was the easiest way to resolve it. The

output is stored in “gstonesiintensity2.txt”.

o Run program “ainserttriint.m” this creates a file “triint.txt” which is necessary

for any programs using return intensities.

Lack of time prevented the rationalising and amending of programs to dispense with

the above. A schematic of the processing is included at the end of this Appendix that

hopefully may prove useful.

Many of the programs developed follow a strategy of processing the centre line then
process left of the centre line then right of centre line. This enabled easy
troubleshooting of the algorithms. The downside however was that each processing
stage created output files that did become daunting, particularly when collecting and
analysing results. It also meant that the final results would ultimately be held in three
separate locations, centre line result, left of centre line and right of centre line. As all
output files were stored as text files, much use was made of Microsoft Excel to
combine the three areas, as a text file for input into other algorithms, and as an Excel

file to produce cross section graphs and further analysis.

Program 1 (Gradient Cross Sections for Triangle Groups)

Programl contains many individual programs that were simply strung together to
make running them easier. This program calculates the gradient for the group

triangles and the centre line group triangles. The inputs to the program are:

e The start and end coordinates of the centre line section.

e The interval distance (in metres) to be taken along the centre line section.

125

o The interval distance (in metres) to be taken left and right of the centre line.

o The number of intervals left and right of the centre hne

The total number of cross sections generated is equal to the length of the centre line
section divided by the interval distance along the section. These inputs define the

Search Template.

QOutputs from the program are:

e crossection”n”.(xt (“n” is an increasing number starting at 1 and signifies the
cross section number). There is one file for each cross section that contains the
points left and right of the centre, and does not contain the centre line point

o clinecrossection”n”.fxt. Contains the centre line points. This is one file and
“n” will be the total number of cross sections. If for example the number of

generated was thirteen the file will be named

cross sections

“clinecrossectiond 3.4xt”
Open “clinecrossection.ixt” in Excel . The file will have six columns and the number
of rows will be equal to the number of cross sections.
Open the “crossectionl.txt” this file will also have six columns and the number of

rows will be equal to the number of intervals taken across the road.

The first entry in clinecrossection.txt must now be copied and inserted info the middle
of erossectionl.txt. This now represents one cross section where the first row is the
outer most left point and the last row is the outermost right point of the cross section.
This text file can now be saved as an Excel file. The operation is repeated until each
centre line point has been inserted into its correct cross section. Each column contains

the following information:

Mean Area Mean Side | Standard Standard Mean Gradient | Standard
Of Triangle Length Deviation of | Deviation of | of Triangle | Deviation of
Groups Area Side Lengths Groups Gradient

The percentage mean gradient and standard deviations were calculated in Excel as an
additional two columns. It must be stressed that the files mentioned above are the

overall result but many other files will be created by this program, some are used for

126

other algorithms the others store interim results. The two last columns (Mean
Gradient and Gradient Standard Deviation) are the important ones, the others can be

omitted.

Program 2

As stated above Program 1 creates some files used by other algorithms, so rather than
running this, program Program 2 offers a shortcut to creating these essential files,
without the necessity of creating many of the data files. Program 2 is made up of
blocks of code taken from Program 1. There is no need to state the output files, but
suffice it to say that if Program 1 is not executed then it is necessary to run Program 2.

The user inputs will be the same as for Program 1.

Program 3 (Seed Triangle Gradient and Intensity Cross Sections)

No user inputs are required for this program.

Qutputs from the program are:

Gradient Cross Sections
o crossectionseed”n”.ixt (“n” is an increasing number starting at 1 and signifies
the cross section number). There is one file for each cross section that contains
the points left and right of the centre, and does not contain the centre line point
o clineseederossection”n " txi. Contains the centre line points. This is one file
and “n” will be the total number of cross sections. If for example the number
of cross sections generated was thirteen the file will be named

“clineseederossectioni 3.1xt”

The centre line point for each cross section must be inserted as per the instructions for
Program 1 using Excel. All columns bar the last one on the right (column “E” in

Excel) can be ignored. The percentage gradient can calculated in Excel.

127

Intensity Cross Sections
o infcrossectionseeds”n”.ixt (“n” is an increasing number starting at 1 and
signifies the cross section number). There is one file for each cross section that
contains the points left and right of the centre, and does not contain the centre
line point
e clineintseedssection”n”.(xt. Contains the centre line points. There is one file

for each point along the centre line. The numbering scheme is as above.

Here again the centre line point has to be inserted into the centre of each cross section,
In this case it is slightly different in so far as the centre line points are not in one file
but individual files. There will therefore be the same number of
“inferossectionseeds.ixi” fles as there are “clineintseedssection.txt” files. Both sets
of files will have two columns. The first column is the Mean Intensity and the second

the Intensity Standard Deviation.

Program 4 (Intensity Cross Sections for Triangle Groups)

No user inputs required. This program produced Intensity cross sections for groups of

triangles. The outputs from this program are:

e inicrossection”n”.(xi (“n” is an increasing number starting at 1 and signifies
the cross section number). There is one file for each cross section that contains
the points left and right of the centre, and does not contain the centre line point

o statsresultclineint "n”.1xt. Contains the centre line points. There is one file for

each point along the centre line. The numbering scheme is as above.

Inserting the centre line is the same as Program 3. Each file will have two columns.

Mean Intensity and Intensity standard Deviation.

128

Programs “ainjectheight.m” and “ainjectheightcline.m”

These two programs are used to interpolate the heights for each point in the search
template from the Lidar TIN in order to generate height cross sections. No user inputs

are required. The output files from these programs are:

“hleftcoords.txi”
“hrightcoords.ixt”

“clineheights.txt”

These three text files must be combined in Excel in the following manner:

Open “hleficoords.txt” in Excel

s Open “clincheights.ixt” in Excel

o Copy the single row of file “clineheights.txt” and paste it as the last entry in

“hieficoords.ixt”

e Open “hrighicoords.ixt” select all the entries and copy them into the space in
“hleficoords.ixi.” immediately after the position where “clineheights.ixt” was

pasted

Save this file as an Excel {ile so that cross section graphs can be created and also save

the combined files as:

e “heightinject.xt” a tab delimited text file that is used for other programs.

Program “heightdifference.m”

This is used to calculate the height difference between adjacent points in the search

template. The output from this program is:

129

o “hdiffixt”

This file can be used as is in Excel to create Height Difference graphs.

Program “linearfittohdiff.m”

This program is used to fit a Least Squares Linear Regression best fit to the Height
Difference cross sections. The road width is required as an input. The output from this
program is a file containing the segments in the cross section where the best fit
occurred:

o “hesifit.ixt”

Program “searchtemplatecoordshdiff.m”

No user inputs required. The above program must be executed first as “hestfit.txt” is
required. This program coordinates the best fit segments from the search template.
The coordinates are stores in:

o ‘“hestfitcoords.ixt”

Program “linearfittoheights.m”

This program fits a Least Squares Linear Regression to the Interpolated Height Cross
Sections. The road width is required as an input. The text file “heightinject.txt” must
have been created before this program is executed (see above) The output from this
program is a file containing the segments in the cross section where the best fit
occurred:

o “bestfitheight.txt”

130

Program “searchtemplatecoordsheight.m”

No wuser inputs required. The above program must be executed first as
“bestfitheight.txt” is required. This program coordinates the best fit segments from

the search template. The coordinates are stores in:

e “bestfitcoordsheight.ixt”

Program “ainjectintensity.ny” and “ainjectclingintensity.m”

These two programs are used to get an [ntensity value for each of the search template
coordinates and the centre line. They are very similar to the programs used to
interpolate the heights so some of the variable names may be misleading as they are
simply the code used in the interpolated height program with some minor changes.
The procedure for combining the text files is exactly the same as for the interpolated
height algorithms (“ainjectheight.m” and “ainjectheightcline.m” above)
The output files are:

o Cintinjectlefi.ixt”

o ‘“intinjectright.ixt”

o Cintinjectcline. txt”
Combine files using Excel and save as an .xls file for cross section graphs. Also save
as a texl file:

e ‘injectint.ixt”

Program “gverageintensity.m”

This program uses the text file from the above program (“injectint.txt”) and also
requires the user to input the road width. Jt calculates the average intensity value and
outputs the segments where the lowest average value occurred. The output from the
program is held in:

e “averageint.ixt”

131

Program “getcline.m”

No user inputs. This program fits a curve to the left and right coordinates from the
above program, calculates a centre line between them, and shows the original centre

line for comparison (Matlab visual).

Programs “castnorthlefitemplate.m and “eastnorthrighttemplate.m”

The Search Template coordinates were in a structure that proved difficult to plot. In
the latter stages of the thesis it was necessary to use the package Trimble Geomatics
Office and there was a need to see the positional relationship of the search template to
the ground truth, These programs organise the data so that it is easily plotted. The data
is collected into two columns, Easting and Northing coordinates, for left and right
sides of the centre line. The centre line is not included, this makes it identifiable as the
large gap between the two when a visual is created. The output is in the following
files:
e “eastnorthlefitemplate.txt™

o ‘“castnorthrighttemplate.txt™

Program “boxnewd4.m’”

This program was not used in the thesis but may prove useful to further automate the
method developed. It is essentially a means of reducing the ground points to an area
of interest based on the coordinates of the assumed centre line. By using this there is
no need to use the fence tool in TerraScan. The user inputs required are

e Start coordinates of centre line

s End coordinates of centre line

e Threshold value in metres
Using the bearing of the start and end coordinates and the threshold value a box is
constructed around the road centre line. The coordinates of the corners of this box are

used to determine coordinates that qualify as being inside. The program code

132

currently expects the ALS ground points to be in a file named lidarscross.txt and the

output from the process is stored in road2005.ixt. These names should be changed to

suite,

Initial Processing Sequence
These programs must be executed first, as they provide essential files for all other algorithms.

Lidar Ground Points

Use Terrascan to Fence
oft Required Area in the
Viciity of the Road

Save Points as an X.Y.Z Save Points as an
tab delinuted text file XY .Z.I tab detimited
named text file named
“gridback.ixt” “estonesintensity. it
Run Program Qutpuwt File
adodetamay.m triangles? Axt
_’
Run Program Cutput File
avectorisetricoordinates m tricoordinates. 1xt
-
Iun Program Output File
lrapzerointjan. m —————— gstonesiintensitv2 txt
Run Program Output File
amserttrunt.m triint.txt
S

Appendix B

Notes on Least Squares Best Fit Algorithin

The following is an explanation of how the least squares regression is performed and
is common to all algorithms that use a least squares best fil to data. Matlab is very
efficient at manipulating data stored in a matrix or tabular format. To exploit this
feature the data is organised as far as possible in matrices, then these are used in
matrix operations {o achieve the final result. The algorithm only uses one input, other
than the data file to be processed, the road width. In essence what the program must
achieve is to automatically process each cross section in turn, finding the intervals in
cach cross section that achieves the best least squares fit to a string of data equal to

the inputted road width.

The solution detailed below may appear overly complex but it does reduce the
amount programming and interim storage of data that would otherwise be required if
each cross section were processed individually. Each iteration of the routine equais
one cross section processed. Three matrices are created all having the same
dimensions

The program code for the algorithm “linearfittoheights.m” should be viewed in
conjunction with the following paragraphs and figures, or any program that solves a

least squares regression

Following the heading “Fill Array with Distance Intervals” are eight lines of code that
build a matrix called “a” based on the input file “heightinject.txt”. The input file is
an array that contains the Interpolated Height cross sections for all the points in the
search template. Table AB.1 is an example of an “a” matrix for one iteration of the
routine. The diagonals represent distance intervals across the cross section. For clarity
an additional column titled “From” and an extra row “To” have been inserted, but it
must be remembered that they are not part of the actual matrix, this consists only of

the rows and columns in italics.

135

[His1t]

I IR 18IS 12 i3 1o 100 =g 10 on 1 10 po =

3

EBBNR%%EEB%%%N%&ESI

The “From” row begins with the first one metre interval and progress towards the
centre of the cross section at fifteen metres. The “To” columns work from the end of
the cross section at thirty metres back towards the centre. With the data structured in

this manner the metre intervals for any road width can determined using their location

within this matrix.

Ky 2 3 zZ 33 » 2 3 2 2 2 B B
B Z él Yee) A 3 2 21 D 9 1 17
/g Y. o] o] A e] 2 21 .) B 7 %
Y:d] 2 P é] 2 21 D 19 18 7 % %
2 p 3 2 21 D 9 18 7 16 % H
A 3 2 2t 4] 19 8 7 % 7] “ G
3 z 21 Q0 0 18 7 16 % H 13 2
Z 2t D 19 18 7 6 15 H B 4 11
21 D 19 18 7 16 % 4 B 2 1 0
D 19 B 7 16 5] " 3 2 11 0 9
9 18 7 16 % 4 3 2 11 0 9 8
18 7] 15 “ 13 12 11 0 9 8 7
18 7 16 15 I 3 12 1t 10 9 8 7 6
7 6 % “ 3 14 11 0 9 8 7 6 5
16 % “ 3 2 1 10 9 8 7 6 5 4
15 H“ 3 2 1 0 9 8 7 6 5 4 3

Table AB.1 Example of “a” Matrix

For example, if the road width parameter was 26m, the diagonals that contain 26 are

located at From 4 TO 30, From 3 TO 29 etc.

The second matrix, “rresid”, is created by the code following the heading in the code
listing “Processing loop Inner” to the third “end” command. The purpose of this part
of the program is calculate a least squares best fit (polyfit and polyval commands) to
the data that relates to each of the intervals in the “a” matrix. Table AB.2 shows the
results of this operation, a matrix of the RMS residual values. If one could imagine
the matrix “e” and “rresid” printed on transparent material, overlaying “a” on

“rresid” would enable you to get the RMS residual values for each road segment.

136

31

SR

N WAUO YD OSID

M NWAOONOOIZIIRIRIR

~N o g hs W=

With the creation of

automatically

T X
1.3567
1.3316
1.338
1.3248
1.3013
1.2488
1.0786

8 0s4A
9 OfsHA

2
1.284
1.2574
1.286
12880
12712
1.2260
1.0887

06474

01806

B
12515
1210
12066
12085
11665
1163
10272
06394
01772

z
11360
1.0778
10515
10486
10457
1.00B4

09345

05756

01538

an additional matrix, Matlab can perform this procedure

%

1012
093118

0888
087735
08774
087116
0750
Q50071
Q177

%
00688
Q84
Q84006
a&zm
0&e1e0
081g68
Q7085
4e872

0126

%
09737
087063

08080
07812
07778
077763
073175
048073
01248

2
095385
08512
07RR
074217
07352
073512
07018

2
095549
083414
07473
07006

0630
063758
065516

047221 04807
01831 0123

21
09
Q81726
Q7178
06a0R2
063753
0620865
6177
04422
01252

2
094158
078
06718

06064
05672
544
Q5401
Q40707

19
0,296
07688
06912
053086
047082
043119
043104
039665

012111 Q0%8S

18
078
0.7565
0.58%5
047546
038082
02168
031442
025631

17
02904
071

501
04526

0317
02420
02165
019248

16
00068
Q75051

05911
44635
a3tes
Q187

01414
01337

007372 0062237 0033383

10 00096372 Q007 Q0EXG3 0.070EHB 006261

0051785 Q048149

0.04372 0.03002 0.03728 006727 0032118

035 0016%B1 0010172

11 0084091 Q067238 00GAG7 0.069554 0.045680 004343 0005887
12 00809 0066855 0042 0067463 0040997 0.0CE674 003496
13 00785 0065724 Q064870 0080077 0.038786 003036 003428
14 007280 Q0BEEP O0KEH 00672 003714 0087444 QBHTS
15 007308 Q05125 006152 006135 0.026419 00400 00532

0230 Q211 0014772 00133 0012004 0.009154 0.007033 0.04EC5
0000 00678 001456 0012634 0011834 000915 000558 0.002L7
000 002057 0013174 000BR Q008704 0008319 0.006535 Q051
00154 001962 0000185 002183 000166 0.001640 0.001646 0.00070
0022464 00172 0008888 000145 QOUOBE3 0.000633 286E06 26327

Table AB.2 Example of “rresid” Matrix (RMS Values)

To illustrate this step the diagonal in Table AB.2, highlighted in red, is the results an

11 metre road width for one cross section. The matrix named “na’ is used to extract

the required data, and was created using the code “na=a= = 11”. This piece of code

can be translated as “create a new matrix “na”, with the same dimensions as “a”, the

diagonal in “a” with values equal to 11 are to be replaced in “na” with the numeral 1,

all other entries are set to zero”(Table AB.3).

137

ﬁﬁﬁﬁ-“a&wmﬂmmbwmi

)
8

2 p.:] z 5 5 Y. Al 2 21 p.\} M]
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0

Table AB.3 Example of Matrix “na” (Mask)

This matrix forms a mask that can be combined with the matrix “rresid”
(whatsse=rresid(na)) which takes only those results relating to the 11 metre road
width. The result is a single column matrix (“whatsse”) from which the minimum

value is taken

The final task is to determine the interval that this minimum refers by finding its
location in the matrix “rresid”. Because of the way the data is organised it is not
possible to do this directly and a little manipulation is required. The Matlab function
“Find” will give an index into the array where the value oceurs in the form of a row
and column number. Row values are in the correct order, but the column value will
have to be adjusted. In Table AB.2 the smallest RMS value is the underlined value

0.020911 using this value combined with the “Find” function

138

oooooooooaoooooﬁ

oooooooooo-hooooa's

(findfrresi —==(minsse))) will give an index into “rresid”. The row index will be 11
and the column index 9, but by adding the road width to the row index value will give

the correct location, the interval between 11m and 22m. This result is then written to a

file and the complete process repeated for all cross sections.

Appendix C

Matlab Program Code

See attached CD

140

Appendix D

Excel Charts

See attached CD

141

