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Abstract 
 
Many biological and astronomical forms can be best 
represented by ellipses. While some more complex 
curves might represent the shape more accurately, 
ellipses have the advantage that they are easily 
parameterised and define the location, orientation and 
dimensions of the data more clearly. In this paper, we 
present a method of direct least-squares ellipse fitting 
by solving a generalised eigensystem. This is more 
efficient and more accurate than many alternative 
approaches to the ellipse-fitting problem such as fuzzy 
c-shells clustering and Hough transforms. This method 
was developed for human body modelling as part of a 
larger project to design a marker-free gait analysis 
system which is being undertaken at the National 
Rehabilitation Hospital, Dublin. 
 
 
Key Words: modelling in Biomedicine and 
Biomechanics; data modelling; limb modelling  
 
1. Introduction 
1.1. Problem Statement 
 
A general conic can be represented by the parameters of 
its characteristic polynomial. Consider the general 
second-order polynomial: 
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f(a, x) = 0 is the equation of the conic and  f(a, xi) is a 
measure of the distance from point pi = (xi, yi) to the 
curve. Given a data set of N points, least-squares fitting 
involves minimising the sum of the squared distance of 
the curve to each of the N points. By using f(a, x) as our 
distance measure, this problem can be stated as the 

minimisation with respect to a of the following 
objective function 
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We can re-state this problem in matrix form and apply a 
constraint which will limit the solution to an elliptic 
curve. Thus we can solve for the vector of parameters, 
a. 
 
1.2. Literature Review 
In a seminal paper, Bookstein [1] introduced an idea for 
fitting shapes to scattered data. He reduced the problem 
of the above minimisation to solving a rank-deficient 
generalised eigensystem for the parameters of the 
characteristic equation with respect to a quadratic 
constraint. Many constraints were suggested in previous 
papers [2] [3] and [4], both for general conics and for 
ellipses. However, in Fitzgibbon’s ellipse-specific 
implementation of Bookstein’s method [5], the equality 
constraint (3) is found to be acceptable. 
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In Fitzgibbon’s work, the block decomposition used to 
solve for the parameters was abandoned and a general 
eigensystem solver was used. In seeking a more 
efficient solution (our method will later be used in 
motion tracking where time is of the essence!), we have 
made use of some of the properties of this ellipse-
specific problem and have developed an efficient 
algorithm for direct fitting of ellipses.  
 
 
2. Gathering Data 
 
In a typical ellipse fitting problem, the data will be in 
the form of points on a shape outline or a cluster of 
points in the xy-plane. We firstly gather our data in the 
form of a design matrix D where D = [x1  x2 … xN]

T and 
the xi are as defined previously. So D is of the form 
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where  xi and yi are the x and y co-ordinates of the data 
points. The objective function d(a) can be re-written in 
matrix form as  
 

d(a) = aTDTDa  = aTSa   (5) 
 
where S is the 6x6 scatter matrix, S = DTD. Expression 
(3) can be written as aTCa = 1 where C is the constraint 
matrix  
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Now our minimisation problem can be re-defined in 
matrix form by introducing the Lagrange multiplier and 
differentiating. Our new eigensystem is now 
 

Sa = λCa     (6) 
aTCa = 1     (7) 

 
S is positive definite and there is a unique solution 
which gives the best fit ellipse. 
 
 
3. Block Decomposition 
 
Because of the structure of the constraint matrix, C, in 
this unique problem, the complexity can be reduced and 
the problem simplified by breaking the matrices up into 
3x3 blocks: 
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 where a1 = (a0   a1   a2)T and a2 = (a3   a4   a5)T. This 
gives a system of equations 
 

S11a1 + S12a2 = λC11a1    (9) 
S21a1 + S22a2 = 0   (10) 

 
Solving for a2 in terms of a1 gives 

 
a2 = -S22

-1S12
Ta1    (11) 

 
Given S positive definite, we can deduce that S22 is non-
singular and also positive definite. Because S is 
symmetric,  S21 = S12

T. Now, the problem of solving for 
a1 reduces down to the equation 
 

[λI – E]a1 = 0    (12) 
 
where I is the 3x3 identity matrix and E is given by 
 

E = C11
-1[S11 - S12S22

-1S12
T]  (13) 

 
This shows that λ is an eigenvalue of E. If we look at 
the original equation and pre-multiply it by aT we get 
 

aTSa = λ aTCa     (14) 
 
The left-hand side of this equation is positive since S is 
positive definite and the right-hand side is equal to λ 
since aTCa = 1. Therefore, we must have λ > 0.  
 
It can be shown that E has only one positive, real 
eigenvalue and the other two are real and negative (see 
Appendix I). It is clear from (12) that a1 is the 
eigenvector corresponding to this unique, positive 
eigenvalue. 
 
To find the one positive eigenvalue, we derive the 
characteristic polynomial of E and solve for its roots. 
As this is a cubic polynomial and we are only interested 
in its sole positive real root, we can easily solve for our 
desired eigenvalue (see Appendix II). Now, we 
determine the corresponding eigenvector, v. Note that if 
v is an eigenvector, then kv is also an eigenvector if k is 
a constant. Therefore, to solve for a1, we must 
determine the appropriate scaling factor k. 
 
The constraint equation (7) can also be broken down by 
block decomposition to the equation 
 

a1
TC11a1 = 1    (15) 

 
So, in order to meet the constraint, we must scale our 
general eigenvector, v to give the specific eigenvector 
a1 for which this equation holds. If we write a1 = kv and 
substitute this into (15), we find and equation for k: 
 

vCv 11
T
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We now have a solution for a1 and we can solve for a2 
from (11), so we can solve for a, giving us a complete, 
unique, least-squares solution to our ellipse-fitting 
problem. 
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4. Parameterizing the Ellipse 
 
Once the equation for the ellipse has been found by 
solving for the vector of coefficients, a, we need to 
determine the parameters of the ellipse, i.e. the position, 
orientation and dimensions. We find the position (the 
centre of the ellipse) by simply minimising the equation 
of the ellipse with respect to x and y. This gives a pair 
of equations which can be solved simultaneously to 
give xc and yc, the co-ordinates of the centre: 
 

(xc, yc) = (x, y) @ 
( ) 0
d

df
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( ) 0
d

df
=

y
yx,

 

     …(17) 
 
In order to determine the major and minor axes, we 
translate the ellipse to centre it at the origin. This 
eliminates the x and y terms in the equation so the 
equation of the ellipse can be rewritten in matrix form: 
 

xTMx = c     (18) 
 
where xT = (x, y),  
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and c is a constant, c = -f(xc, yc). 
 
By using Lagrange multipliers, we find that the problem 
of finding the maximum and minimum points on the 
ellipse reduces to solving for the eigenvalues and 
eigenvectors of M. If we consider v, an eigenvector of 
M, we can say that our solution x is also an eigenvector 
so x = kv, where k is some constant. Now we solve for 
k, as before, by substituting this relationship into the 
ellipse equation, (18): 
 

MvvT

ck =      (19) 

 
Now the two solutions for x (one for each eigenvalue) 
are the vectors corresponding to the major and minor 
axes of the ellipse. Finally, finding the orientation is a 
trivial problem. We simply find the angle that the major 
axis makes with the horizontal. 
 
 
5. Results 
 
Comparative results have already been given for least-
squares ellipse-fitting in [5] and so need not be repeated 
here. This method has already been shown to be robust, 
accurate and reliable when compared to other least-
squares based methods (see [6] and [7]). Least-squares 

methods are found to be preferable in many cases to 
other available methods such as Hough transforms [8], 
moments [9] or fuzzy c-shells clustering [10] due to 
their low computational costs and overall efficiency. By 
using the block decomposition and availing of the 
unique characteristics of the ellipse-specific problem, 
we add to the efficiency of the algorithm. Our particular 
algorithm is efficient enough to be used, not only in 
multiple ellipse fitting cases (e.g. human body 
modelling) but also in video-based motion tracking. 

 
FIGURE 1: Ellipse-fitting performed on crudely-

drawn ellipses 
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(a) 

 
(b) 

FIGURE 2: Ellipse-fitting in action in human body 
modelling (a) original image; (b) image with ellipses 

fit to body segments (note: the torso is of minimal 
interest in gait analysis and so is modelled by a single 

ellipse) 
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