

Dublin Institute of Technology ARROW@DIT

Articles School of Mathematics

1978-01-01

A topological approach to a problem of Nunke

Brendan Goldsmith Dublin Institute of Technology, brendan.goldsmith@dit.ie

Follow this and additional works at: http://arrow.dit.ie/scschmatart

Part of the Mathematics Commons

Recommended Citation

Goldsmith, Brendan: A topological approach to a problem of Nunke. Archiv. Math. (Basel), 30, (1978), pp.70-74.

This Article is brought to you for free and open access by the School of Mathematics at ARROW@DIT. It has been accepted for inclusion in Articles by an authorized administrator of ARROW@DIT. For more $information, please\ contact\ yvonne. desmond@dit.ie, arrow. admin@dit.ie.$

A topological approach to a problem of Nunke

By

B. Goldsmith

1. Introduction. If P denotes the Specker group i.e. the direct product of countably many infinite cyclic groups, then the following question was raised by Nunke [6]: "If P has a subgroup A such that $P/A \cong \mathbb{Q}$, the additive group of rationals, is $A \cong P$?"

The question has been answered negatively by Meijer [4]. However the problem arose from essentially homological work of Nunke and Meijer's solution was also homological. We present here a solution to the problem which uses a topological idea introduced by Lady [3] and avoids all homological machinery.

The word group will be understood to refer to an additively written abelian group and we refer to the standard works [1] and [2] of Fuchs for notation and terminology.

2. The Main Result. A Specker group P may be topologized by using the product topology obtained by considering each component as being discretely topologized. We refer to this topology on P simply as the product topology. P may also be topologized by choosing as a basis of neighbourhoods of 0 the subgroups nP ($n \in \mathbb{Z}$, $n \neq 0$). This is the familiar \mathbb{Z} -adic topology (see [1] page 30). We will make use of a topology, which, following Lady [3], we call the strong topology. This is the topology on P which is the supremum of the \mathbb{Z} -adic and product topologies on P.

The result we require can be stated as

Theorem 1 (Meijer). Let G be a torsion-free group of at most countable rank and let X be an extension of a Specker group P by G. Then $X \cong P$ if and only if G is free of finite rank.

We use the following results:

Lemma 2. If $Y \subseteq P$ and $Y \cong P$ then there are integers k_n and elements a_n of P(n = 1, 2, 3, ...) such that

$$P = \prod_{n=1}^{\infty} \langle a_n \rangle$$
 and $Y = \prod_{n=1}^{\infty} \langle k_n a_n \rangle$

$$w_3 = (0, 0, y_3, y_4, ...),$$

 \vdots
 $w_n = (0, 0, ..., 0, y_n, y_{n+1}, ...)$ etc.

Since, for every positive integer j, the j'th components of almost all the w_n vanish, the infinite sum $\sum_{n=1}^{\infty} s_n w_n$ (s_n integers) makes sense and so the subgroup W consisting of all such infinite sums is a product in the sense defined by Fuchs [2] § 95.

Claim
$$W = Y$$
. For if $w \in W$ then $w = \sum_{n=1}^{\infty} s_n w_n (s_n \in \mathbb{Z})$ and so $w = (s_1 y_1, s_2 y_2, (s_2 + s_3) y_3, \dots (s_2 + s_3 + \dots + s_n) y_n, \dots) \in Y$.

Thus $W \leq Y$. While conversely if $y \in Y$ then $y = (t_1y_1, t_2y_2, ..., t_ny_n, ...)$ for integers t_n , and so $y = \sum_{n=1}^{\infty} s_n w_n$ where the s_n are given by

$$s_1 = t_1$$
, $s_2 = t_2$, $s_3 = t_3 - s_2$, $s_4 = t_4 - s_3$,... etc.

Thus $y \in W$ and so W = Y as claimed.

Thus Y is a product in the sense of Fuchs [2] $\S 95$ and the result follows from [2] Lemma 95.1.

Proposition 3 (Nunke). Every epimorphic image of a Specker group P is the direct sum of a cotorsion group and a direct product of at most countably many infinite cyclic groups.

Proof. See Nunke [5] or Fuchs [2] 95.2.

Proof of Theorem 1. Suppose X is isomorphic to P, then applying Proposition 3 to G where $X/P \cong G$, we see that G is a direct sum of a cotorsion group and a product of infinite cyclic groups. Since G has at most countable rank it is clear that the product of infinite cyclic groups must be a finite product. Moreover since a reduced torsion-free cotorsion group must contain a summand isomorphic to the p-adic integers, for some p, it is clear that the cotorsion summand of G must be divisible. Thus $G = D \oplus F$ where D is divisible and F is a finite product of infinite cyclic groups i.e. F is free of finite rank. It remains to show that D = 0.

Choose a subgroup Y of X such that $Y/P \cong F$. Clearly $Y \cong P$ and $X/Y \cong D$. Now applying Lemma 2 we may write

$$X = \stackrel{\infty}{\prod} \langle a_n \rangle$$
 and $Y = \stackrel{\infty}{\prod} \langle k_n a_n \rangle$.

We topologize X with the strong topology. (We remark that we are only concerned with this presentation of X and we don't need to show that the product topology on X is independent of the presentation although this is indeed true.) The proof is completed by the following result:

Lemma 4. Y is closed and dense in X in the strong topology on X.

Proof. (i) Y is dense. If x is in X then a basis for the neighbourhoods of x in the strong topology is $x + m \prod_{n \neq J} \langle a_n \rangle$, where J is a finite subset of $\{1, 2, ...\}$ and $m \in \mathbb{Z} \setminus \{0\}$. To show density it suffices to show that for any finite subset J and any integer $m \neq 0$,

$$Y \cap (x + m \prod_{n \notin J} \langle a_n \rangle)$$
 is non-null.

Since Y is dense in X in the \mathbb{Z} -adic topology, we may write for any non-zero integer $m, \ x = m \ x' + y$, some $x' \in X$, $y \in Y$. Say $x' = (\dots, r_i a_i, \dots)$. Then set x' = u + v where $u = (\dots, r_i a_i, \dots) \ i \notin J$, and $v = (\dots, r_i a_i, \dots) \ i \in J$. Then $x - m \ u = m \ v + y$. But Y is pure in X and $k_n \ a_n \in Y \cap k_n \ X$, so $a_n \in Y$ each n. Since v is just a finite sum of multiples of elements of Y, v is in Y. Thus $x - m \ u \in Y$ i.e.

$$Y \cap (x + m \prod_{n \notin J} \langle a_n \rangle)$$
 is non-null.

(ii) Y is closed in X. Since the strong topology is the supremum of the product and \mathbb{Z} -adic topologies, it is clearly sufficient to show Y is closed in the product topology on X. If \bar{Y} denotes the closure of Y in the product topology on X then we see that $x \in \bar{Y}$ if, and only if, for each n = (1, 2, ...) there is a u^n in Y such that $x_i = u_i^n$ for all i < n. (Here the subscript i denotes the i-th component.)

So if $x \in \overline{Y}$ then there is a u^2 in Y such that

$$x_1 = u_1^2 = r_1 k_1 a_1$$
 some $r_1 \in \mathbb{Z}$.

Similarly $x_2 = u_2^3 = r_2 k_2 a_2$ some $r_2 \in \mathbb{Z}$ etc.

But then $x = (r_1 k_1 a_1, r_2 k_2 a_2, ..., r_i k_i a_i, ...)$ is clearly in Y. Thus Y is closed as required.

We can easily deduce

Corollary 5. If X is a pure subgroup of the Specker group P such that P|X is of at most countable rank, then $X \cong P$ if and only if $P|X \cong \mathbb{Z}^n$ for some non-negative integer n.

Remark. It is hoped that this paper, along with Lady's paper [3], will illustrate how useful simple topological techniques may be in areas which have hitherto used homological machinery.

Acknowledgement. I would like to express my thanks to my colleague Raymond Flood for several interesting and helpful conversations on some of the topological aspects of this work.

References

- [1] L. Fuchs, Infinite Abelian Groups, Vol. I. New York and London 1970.
- [2] L. Fuchs, Infinite Abelian Groups, Vol. II. New York and London 1973.
- [3] E. L. Lady, Slender rings and modules. Pacific J. Math. 49, 397-406 (1973).
- [4] A. R. Meijer, A note on separable homogeneous extensions of the Specker group. Arch. Math. 24, 123-125 (1973).
- [5] R. J. NUNKE, Slender groups. Bull. Amer. Math. Soc. 67, 274-275 (1961); Acta Sci. Math. (Szeged) 23, 67-73 (1962).
- [6] R. J. NUNKE, Problem posed in: Topics in Abelian Groups, Chicago 1963.

Eingegangen am 10. 2. 1977

Anschrift des Autors:

B. Goldsmith
College of Technology
Kevin Street
Dublin 8, Ireland
and
School of Theoretical Physics
Dublin Institute for Advanced

Dublin Institute for Advanced Studies

Dublin 4, Ireland