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A topological approach to a problem of Nunke

By

B. GorLpsMITH

1. Introduction. If P denotes the Specker group i.e. the direct product of countably
many infinite c¢yclic groups, then the following question was raised by Nunke [6]:
“If P has a subgroup 4 such that P/4 ~ Q, the additive group of rationals, is
A P??

The question has been answered negatively by Meijer [4]. However the problem
arose from essentially homological work of Nunke and Meijer’s solution was also
homological. We present here a solution to the problem which uses a topological
idea introduced by Lady [3] and avoids all homological machinery.

The word group will be understood to refer to an additively written abelian
group and we refer to the standard works [1] and [2] of Fuchs for notation and
terminology.

2. The Main Result. A Specker group P may be topologized by using the product
topology obtained by considering each component as being discretely topologized.
We refer to this topology on P simply as the product topology. P may also be
topologized by choosing as a basis of neighbourhoods of 0 the subgroups n P (n e Z,
n == 0). This is the familiar Z-adic topology (see [1] page 30). We will make use of
a topology, which, following Lady [3], we call the strong topology. This is the topo-
logy on P which is the supremum of the Z-adic and product topologies on P.

The result we require can be stated as

Theorem 1 (Meijer). Let G be a torsion-free group of at most countable rank and let X
be an extension of a Specker group P by G. Then X o~ P if and only if G is free of
finite rank.

We use the following results:

Lemma 2. If ¥ < P and Y =~ P then there are integers ky, and elements a, of
Pn=1,23,...) such that

P=TT¢a> and, Y=TT¢k.a.>
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Proof. Suppose ¥ :H {Yny. Define elements wy, of P by
n=1

wy = (91,0,0,...),
wy = (0,92, Y3, Y4, -..)
wz = (0,0,93,%4,...)

wy=(0,0,...0,¥n, Yn+1,...) etec.

Since, for every positive integer §, the j’th components of almost all the w, vanish,

the infinite sum z SpWy (sy integers) makes sense and so the subgroup W consisting
n=1

of all such infinite sums is a product in the sense defined by Fuchs [2] § 95.
Claim W =Y. Forif we W then w = anwn (speZ) and so
n=1

W= (51Y1,82Y2, (524 83) Y3, ... (S2 -+ 83+ + Sp) Y, .. )€Y .
Thus W < Y. While conversely if y ¢ ¥ then v = (f191, taya, ---, ta¥n, ...) for in-

[ee]
tegers iy, and so y = zsn w, where the s, are given by
n=1

s1=1, Sa=1lg, 8z=1I3— 83, Sa=1l4—S83,... etc.

Thus y € W and so W = Y as claimed.
Thus Y is a product in the sense of Fuchs [2] § 95 and the result follows from
[2] Lemma 95.1.

Proposition 3 (Nunke). Every epimorphic image of a Specker group P is the direct
sum of a cotorsion group and a direct product of at most countably many infinite cyclic
groups.

Proof. See Nunke [5] or Fuchs {2] 95.2.

Proof of Theorem 1. Suppose X is isomorphic to P, then applying Proposition 3
to @ where X /P = G, we see that @ is a direct sum of a cotorsion group and a product
of infinite cyclic groups. Since G has at most countable rank it is clear that the product
of infinite eyclic groups must be a finite product. Moreover since a reduced torsion-
free cotorsion group must contain a summand isomorphic to the p-adic integers, for
some p, it is clear that the cotorsion summand of ¢ must be divisible. Thus G =D @ F
where D is divisible and F is a finite product of infinite cyclic groups i.e. F is free
of finite rank. It remains to show that D = 0.

Choose a subgroup Y of X such that Y/P ~ F. Clearly ¥ o~ P and X/Y = D.
Now applying Lemma 2 we may write

¥ =TT¢a.> and Y =T T1¢kwan>.
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We topologize X with the strong topology. (We remark that we are only concerned
with this presentation of X and we don’t need to show that the product topology
on X is independent of the presentation although this is indeed true.) The proof is
completed by the following result:

Lemma 4. Y is closed and dense in X in the strong topology on X.

Proof. (i) Yis dense. If  is in X then a basis for the neighbourhoods of z in the
strong topology is x + m H {apy, where J is a finite subset of {1,2,.. }andme Z\{0}.
n¢S

To show density it suffices to show that for any finite subset J and any integer m ==0,

YN (@4 m] [<an)) isnon-null.
nES
Since Y is dense in X in the Z-adic topology, we may write for any non-zero integer
m, x=ma’ 4y, some '€ X, ye Y. Say 2’ = (....maq,...). Thenset o' = u + v
where u=(...,7a;, )i¢d, and v={(...,7a;,...)icJ. Then r—~mu=mv-+y.
But Y is pure in X and kya,e ¥ N knX, 80 ape Y each n. Since v is just a finite
sum of multiples of elements of ¥, visin Y. Thus z — muec ¥ i.e.

Y@+ m] [<an)) isnon-null.
n¢

(i) Y 4s closed in X. Since the strong topology is the supremum of the product
and Z-adic topologies, it is clearly sufficient to show Y is closed in the product
topology on X. If ¥ denotes the closure of Y in the product topology on X then we
see that z e ¥ if, and only if, for each n = (1, 2, ...) there is a u” in ¥ such that
x; = ug for all ¢ < n. (Here the subscript 7 denotes the i-th component.)

So if z € ¥ then there is a 42 in. ¥ such that

vy =ul=r1kia; some rieZ.
Similarly 2= ug =rokoas some roeZ ete.
But then o = (r1 k1 ay, rakaas, ..., rk; @, ...) is clearly in ¥. Thus Y is closed as

required.
We can easily deduce

Corollary 5. If X is a pure subgroup of the Specker group P such that P|X is of at
most countable rank, then X o~ P if and only if PIX ~ 7" for some non-negative
tnleger n.

Remark. It is hoped that this paper, along with Lady’s paper [3], will illustrate
how useful simple topological techniques may be in areas which have hitherto used
homological machinery.
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