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FIGURE 37 Examples of the differences in the lightness (for a HSL - Hue, Saturation
and Lightness - colour model) of the blue light generated by Tyndall scat-
tering (scattering of light by fine flour suspended in water - left), Rayleigh
scattering (scattering of light by the atmosphere - centre) and ‘gravitational
scattering’ (diffraction of light by the gravitation field generated by a galaxy
- right).

However, data available to undertake such an analysis are not yet available. Instead,

another approach is considered based on the colour generated by light scattered

under different conditions. For Tyndall scattering discussed in Section 4.3.3, the

intensity of light is proportional to λ−2 and for Rayleigh scattering discussed in

Section 4.3.2, the light scattered intensity is proportional to λ−4. Because of these

wavelength scaling relationships, both Tyndall and Rayleigh scattering generate

blue light. However, Tyndall scattering can be expected to generate a lighter blue

than Rayleigh scattering. This is illustrated in Figure 37 which also shows, for

comparison, the colour of the blue light scattered by a gravitational field which is

proportionately darker because of the scaling relationship characterised by λ−6. This

comparison is quantified in Figure 38 which shows the differences in the lightness

of blue using a Hue, Saturation and Lightness (HSL) colour model. The lightness

factor associated with each image is characterised by the ratios 1:2:3 which is in

agreement with the logarithmic scaling ratios 2 ln λ : 4 ln λ : 6 ln λ.

9.10 Schrödinger Scattering

The theoretical ideas established so far and some of the implications that have

been discussed are without reference to any physical significance of the scattering

function. In this section (and the following section) we examine the characteristics

of this scattering function by revisiting two wave equations in quantum mechanics,

namely the Schrödinger equation (for the non-relativistic case) and the Klein-Gordon

equation (for the relativistic case).

If we consider the diffraction of light by a material object, then physically, the

scattering function γ(r) must describe some appropriate property of matter (the
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FIGURE 38 The ‘blues’ associated with Tyndall (left), Rayleigh (centre) and gravita-
tional (right) light scattering obtained by averaging over many images of
each effect.

material properties) that is consistent with electromagnetic theory. On the macro-

scopic scale (i.e. many orders of wavelength) the relative permittivity, permeability

and conductivity are the basis for defining Maxwell’s macroscopic equations [74].

These material properties vary considerably from one application to the next. They

may be isotropic or non-isotropic functions of space, time varying and field varying

(non-linear optics), for example.

In electromagnetism, the use of the scalar Helmholtz equation to develop the

results given so far, is compatible only with the case when the relative permeability

is 1, the conductivity is zero and when the material is isotropic (i.e. the relative

permittivity is a scalar function of space). However, in terms of a universal wavefield

theory, matter is ultimately composed of matter waves which conform to matter wave

equations such as the Schrödinger equation.

The fundamental postulates of quantum mechanics are that E = h̄ω and

p = h̄k. Given that

E =
p2

2m
then

1
c2 =

k2

ω2 =
p2

E2 =
2m
E

and the wave equation(
∇2 − 1

c2
∂2

∂t2

)
U(r, t) = 0,

1
c2 =

1
c2

0
(1 + γ)

can be written in terms of the Helmholtz equation

(∇2 + k2)u(r, k) = −k2γu(r, k), γ =
2mc2

0
E
− 1.

Note that for a potential energy function Ep when

E =
p2

2m
+ Ep,
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the scattering function is given by

γ =
2mc2

0(E− Ep)
E2 − 1.

In either case, we note that Schrödinger’s equation is obtained when the angular

frequencies defining k and E are the same. Thus, the scattering function associ-

ated with the Helmholtz equation given above is, in this sense, a generalization of

Schrödinger’s equation where the wavefield U(r, t) can oscillate at any frequency ω

less than, or significantly less than the frequency, ω1 say, associated with a matter

wave of energy E = h̄ω1. Schrödinger’s equation is therefore taken to be a ‘product’

of the limiting case: ω → ω1
4.

Defining the scattering function in this way, we note that

U0
s =

k2
0Γ

4πr2

where, for constant E and m,

Γ = Mm

and

M =
V
m

(
2mc2

0
E
− 1

)
, V =

∫
V

d3r.

Suppose that a mass m′, placed in the vicinity of the field U0
s , experiences a force F

that is proportional to Um′ so that

F = v2Um′

where v2 is a constant of proportionality. Then

F = v2k2
0

Γm′

4πr2 = G
mm′

r2 , G =
Mv2k2

0
4π

and v has the dimensions of velocity (i.e. length.second−1). We can then derive an

expression for the wavelength of the field U0
s in terms of the gravitational constant

G, i.e.

λ0 =
2π

k0
=

c0

ν

where ν is the frequency given by

ν = r
c0

v2

√
Gm
πV

, r =

√
E

2mc2
0 − E

.

Note that for the frequency (and wavelength) to be a real positive quantity, we

require that

2mc2
0 > E

4 An entirely phenomenological argument (like Schrödinger’s equation itself!).
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so that
2mc2

0
E
− 1 > 0 =⇒ γ > 0.

Also note that because v has dimensions of velocity, the ‘force field has an associated

‘speed’.

The inhomogeneous Helmholtz equation(
∇2 +

ω2

c2
0

)
u = −ω2

c2
0

γu

where

γ = 2mc2
0(E− Ep)/E2 − 1

is the Schrödinger equation in ‘disguise’ in the sense that if ω → ω1 where E = h̄ω1,

then

(∇2 + k2
1)u = γ1u

where

k2
1 =

ω2
1

c2
0

=
2mE

h̄2 and γ1 =
2mEp

h̄2 .

Given that Proca’s equations can be decoupled to produce inhomogeneous

Klein-Gordon equations for φ and A, we can adopt the same procedure to obtain

the following inhomogeneous wave equations for the non-relativistic case, i.e.(
∇2 − 1

c2
0

∂2

∂t2

)
φ(r, t)− γ

1
c2

0

∂2φ

∂t2 = − ρ

ε0

and (
∇2 − 1

c2
0

∂2

∂t2

)
A(r, t)− γ

1
c2

0

∂2A
∂t2 = −µ0j,

Maxwell’s equations being modified to the form

∇ · E =
ρ

ε0
− γ

1
c2

0

∂2φ

∂t2 , ∇ · B = 0

∇× E = −∂B
∂t

, ∇× B = µ0j + ε0µ0
∂E
∂t

+ γ
1
c2

0

∂2A
∂t2 .

The fields φ0
s and A0

s (the equivalent of U0
s ) are given by

φ0
s =

k2
0Γ

4πr2 +
P

4πε0r2

and

A0
s = n̂0

k2
0Γ

4πr2 +
µ0J

4πr2 , n̂0 = A0
s / | A0

s |

where, for time-independent functions ρ and J,

P =
∫
V

ρ(r)d3r and J =
∫
V

j(r)d3r.
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Note that for the limiting case when ω → ω1 we obtain modified Schrödinger

equations for φ and A given by

(∇2 + k2
1)φ = γ1φ− ρ

ε0

and

(∇2 + k2
1)A = γ1A− µ0j.

In the context of the results above, we interpret the field U0
s in terms of a low

frequency electric scalar potential (in a charge free environment with ρ = 0). In this

sense, we could interpret the field U0
s as an ultra low frequency electromagnetic field

in terms of an answer to the question: how long does a radio wave have to be before

it becomes something else? However, in the universal wave model considered here,

fields such as φ and A are subservient to the wavefield characterised by a governing

wave equation in a similar sense to the rationale associated with the derivation

of the Proca equations. Thus, the issue as to whether Us is interpreted in terms

of an electromagnetic, gravitational or quantum field is redundant, at least in the

conventional sense. Rather, we consider all fields such as φ to be a characteristic

of wavefields interacting over a broad frequency range. In this sense, the use of a

scalar wavefield U in quantum mechanical equations such as the Schrödinger and

Klein-Gordon equations is also being used in the interpretation of electromagnetism

and gravitation. Field equations such as Maxwell’s and Einstein equation’s must be

re-interpreted and derived from a universal wavefield approach alone, along with the

physical interpretation of an electric and gravitational field.

9.11 Klein-Gordon Scattering

For the relativistic case

E2 = p2c2
0 + m2c4

0

and
1
c2 =

k2

ω2 =
p2

E2 =
1
c2

0
−

m2c2
0

E2 .

The wave equation (
∇2 − 1

c2
∂2

∂t2

)
U(r, t) = 0

can thus be written in terms of the Helmholtz equation as

(∇2 + k2)u(r, k) = −k2γu(r, k)

where γ is the ‘Klein-Gordon scattering function’ given by

γ = −
m2c4

0
E2
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The field U0
s is then given by

U0
s = −

k2
0Γ

4πr2

where (for constant E and m)

Γ = Mm2, M =
c4

0V
E2 .

We note that in this case, U0
s is proportional to the square of the mass and is

of negative polarity compared to the non-relativistic case, i.e. it will generate a

repulsive force on a particle of mass m′ given by

F = −G
m2m′

r2 .

9.12 Intermediate Scattering

Since (for positive energies)

E =
√

p2c2
0 + m2c4

0 '
p2

2m
+ mc2

0,
p2

m2c2
0

<< 1

we recover Schrödinger’s equation

ih̄
∂U
∂t

= − h̄2

2m
∇2U + mc2

0U

which now includes the rest mass energy term mc2
0U. In order to consider the inter-

mediate scattering problem (intermediate between Schrödinger and Klein-Gordon

scattering) we need to derive a wave equation that unifies both the Klein-Gordon

and Schrödinger equations. One approach to this is through the introduction of a

fractional time derivative ∂q/∂tq, 1 < q < 2 where q = 1 provides Schrödinger’s

equation and q = 2 yields the Klein-Gordon equation. A fractional partial differen-

tial equation that achieves this unification is (derived through induction)(
∇2 − 1

cq
∂q

∂tq

)
U = KnU

where (c having fractional dimension L2/qs−1)

1
cq =

(
2m
ih̄

)2−q 1

c2(q−1)
0

and

Kn =

{
22−qκ2, n = 1;
a2−q(q− 1)κ2(q−1), n = 2.
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The function Kn provides unification for the Schrödinger equation with (n = 1)
and without (n = 2) the rest mass term, the constant a, with fractional dimension

L2(q−2)/(2−q), being required to yield dimensional compatibility. With

1
cq =

1
cq

0
(1 + γ)

we can then write (
∇2 − 1

cq
0

∂q

∂tq

)
U = γ

1
cq

0

∂qU
∂tq + KnU

where

γ =
(

2mc0

ih̄

)2−q
− 1 = (−2iκ)2−q − 1.

Defining a fractional differential in terms of the Fourier transform, i.e.

∂q

∂tq U(r, t)⇐⇒ (iω)qu(r, ω),

we have (
∇2 + Ω2

)
u = −Ω2γu + Knu

where

Ω2 = − (iω)q

cq
0

, Ω = ±i
(iω)q/2

cq/2
0

.

The Born scattered field is then given by

us = Ω2g(r, ω)⊗3 γui − g(r, ω)⊗3 Knui

where

g(r, ω) =
exp(iΩr)

4πr
.

The time dependent Green’s function can be evaluated using the series expression

for the complex exponential term by term as follows (taking Ω = −i(iω/c0)q/2 to

give consistency with the ‘outgoing free space’ Green’s function in the case when

q = 2):

G(r, t) =
1

2π

∞∫
−∞

dω exp(iωt)
exp[(iω/c0)q/2r]

4πr

=
1

4πr
1

2π

∞∫
−∞

dω exp(iωt)[1 + (iω/c0)q/2r

+
1
2!

(iω/c0)qr2 + ...] =
δ(t)
4πr

+
1

4π
c−q/2

0
∂q/2

∂tq/2 δ(t)

+
1

4π

∞

∑
n=1

1
(n + 1)!

rnc−(n+1)q/2
0

∂(n+1)q/2

∂t(n+1)q/2
δ(t).
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Inverse Fourier transforming and using the convolution theorem, the time-dependent

scattered field is given by

Us = − 1
cq

0

∂q

∂tq G(r, t)⊗3 ⊗tγUi − G(r, t)⊗3 ⊗tKnUi

where ⊗t denotes the convolution integral over t and Us and Ui are the time-

dependent scattered and incident fields respectively (i.e. the inverse Fourier trans-

forms of us and ui, respectively5). We note that for r → 0,

Us = − 1
4πr
⊗3 γ

1
cq

0

∂qUi

∂tq −
1

4πr
⊗3 KnUi

− 1

4πc3q/2
0

∂3q/2

∂t3q/2

∫
V

γ(r)Ui(r, t)d3r

− 1

4πcq/2
0

∂q/2

∂tq/2

∫
V

Kn(r)Ui(r, t)d3r

and that in the ultra-low frequency range (i.e. in the limit as ω0 → 0),

u0
s =

Ω2
0

4πr
⊗3 γ− 1

4πr
⊗3 Kn.

In this case, the field U0
s is given by (for constant γ and κ)

U0
s =

V
4πr2 (Ω2

0γ− Kn)

which is zero when Ω2
0γ = Kn or when

k0 =
(−2)(q−2)/qκ(q−2)/qK1/q

n(
1− (i/2)2−q

κ2−q

) 1
q

.

9.13 Interpretation

If we define a gravitational field (for a spherically symmetric scatterer) to be given

by the field U0
s then the interpretation of what gravity is must change. According

to the universal scalar wavefield model considered here, a gravitational field is due

to the scattering (by a material object composed of a spectrum of matter waves) of

very low frequency scalar Helmholtz wavefields. Thus, if two bodies are in proximity,

then each body will scatterer low frequency waves and each will interact with the

scattered wavefield generated by the other, both experiencing an attractive (in the

5 For notational convenience, we have used Us to represent the time-dependent wavefield
Us(r, t) which should not be confused with the use of Us(r, k), k→ 0 in Section 9.7 or U0

s as
used in Section 9.8.
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non-relativistic case) gravitational force given by v2m′U0
s where m′ is the mass of

the other body. In this sense, we define gravity as follows:

Two bodies are attracted to each other because each ‘detects’ the ‘gravity waves’

scattered by the other in the non-relativistic case.

However, the term ‘gravity waves’ used here is not the same as that used in general

relativity. The term relates to the low frequency components of a scalar wave spec-

trum and must be interpreted within the context of the limiting condition k→ 0.

The model provides results that are compatible with observable characteristics

of a gravitational field: (i) a gravitational field is a weak field; (ii) a gravitational

field is characterized by an inverse square law; (iii) a gravitational field deflects

light; (iv) gravity is an attractive only force. However, in this model, the ‘deflec-

tion’ of light is not taken to be due to the bending of light as it travels through a

curved space-time manifold (Einstein’s model) but through the diffraction of light

(and other electromagnetic radiation) by a gravitational field. It should be noted

that, according to this model, gravity waves (as understood in terms of Einstein’s

equations) can not be measured. The attempt to detect Einstein gravity waves (i.e.

the gravity waves predicted by general reativity) is the equivalent of constructing a

weighing machine to weigh itself! Rather, we are ‘detecting’ gravity waves all the

time, the effect of this ‘detection’ manifesting itself in terms of the ‘force of gravity’

we are all accustomed to.

The attractive only condition is valid for the non-relativistic case (i.e. for the

Schrödinger scattering function). In the relativistic case, although the gravitational

field U0
s is still weak, it depends on the square of the mass and generates a repulsive

force. Note that in the case of the Schrödinger scattering function with potential

energy Ep, then

γ > 0 =⇒
2mc2

0(E− Ep)
E2 − 1 > 0

However, for any material characterised by a case when Ep > E, the scattering

function is negative and the gravitational field defined by U0
s will yield a repulsive

force.

9.14 Principle of Eigenfield Tendency: Quantum Mechanics Revis-
ited

Given the approach considered, an eigenfield tendency principle is required in order

to explain the properties of matter as described by Schrödinger’s equation (in the

non-relativistic case) as originally conceived by Schrödinger [57]. For different po-

tential energy functions Ep(r), it is well known that this equation describes eigenfield

systems that can be used to model the properties of matter through the principles of

quantum mechanics (in the full context of the subject). The original reason for de-

riving the Schrödinger scattering function was so that the asymptotic behaviour of a
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scattered Helmholtz wavefield (i.e. when ω → 0) could be examined. However, the

consequence of this is that the Helmholtz equation is the governing wave equation

only over a limited frequency band and that as the frequency of a wavefield increases

(i.e. as ω → ω1) the Helmholtz equation reduces to the Schrödinger equation. If

we consider the Schrödinger equation to represent eigenfields (at least in terms of

its description of matter waves), then we can argue that at the higher end of the

our universal spectrum, wavefields tend to behave more and more like eigenfields.

Matter is thus taken to be composed of eigenfield systems at higher and higher fre-

quencies; first the atom, then the nucleus, then the constituents of the nucleus (the

quarks) and so on. Equations such as Schrödinger’s equation and Dirac’s equation

are both descriptions for eigenfield systems at different energies (non-relativistic and

relativistic energies respectively).

In the context of matter being an eigenfield system described by eigenfunction

solutions to Schrödinger’s equation, consider the case of a free electron and a free

proton and the formation of hydrogen gas. In conventional (particle) terms, an elec-

tron and a proton have the same charge but of opposite polarity. This attracts the

particles to form a neutral hydrogen atom, an effect which requires the introduction

of a field, namely, an electric field. In terms of a wavefield theory, both the electron

and proton are waves. In an ionised state, the electron is a free wave and the proton

(relative to the electron) is a potential which is itself an eigenfield system (consisting

of a higher frequency spectrum - the ‘nuclear spectrum’). The free wavefield requires

greater energy to exist in a free state and hence, based on the principle of least en-

ergy, will ‘attempt to exist’ as an eigenfield. This ‘eigenfield’ may have a number

of eigenstates, each with a specific energy level. The difference in energy between

the free energy state and the available eigenstate(s) provides a residual energy, i.e.

a free energy wavefield with frequency E/h̄. Once formed, the eigenfield will not

share its eigenstate(s) as this will require greater energy and hence, if another elec-

tron comes in to the vicinity of the neutral hydrogen atom, it will appear to undergo

a repulsive force. On the other hand, since the combined eigenfields associated with

two hydrogen atoms requires lower energy than two separate eigenfields (i.e. two

hydrogen atoms) then the result is the diatomic Hydrogen molecule H2 - the result

of a covalent bond. In this sense, an electric field is not the product of a charge,

rather it is that entity associated with the propensity for a free wavefield to become

an eigen wavefield. A magnetic field is then a measure of the rate of change over

which this propensity is satisfied, i.e. If U(r, t) exists such that∫ ∫
| U(r, t) |2 d3rdt

is a minimum, then

Electric Field E
Free Wavefield → Eigen Wavefield

Magnetic field ∂E
∂t

Note that the transition described by Free Wavefield→ Eigen Wavefild may have

both magnitude and direction since a free wavefield will attempt to find the shortest
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possible path in a three-dimensional space in order to become an eigen wavefield.

An electric field will therefore appear to be a vector field. Further, if the transition

has no directional preference, then an electric field will appear to have a Coulomb

field strength characterised by an inverse square law.

The principle of eigenfield tendency is just the principle of least energy as

applied to a universal wavefield model. It is, however, a principle which allows us

to explain an electric field without having to refer to the concept of a field being

‘radiated’ by a charge! For example, ‘electron cloud’ repulsion theory (Valence

Shell Electron Pair Repulsion) is used to predict shapes and bond angles of simple

molecules in which the ‘electron cloud’ may be a single, double or triple bond, or

a lone pair of electrons - a non-bonding pair of electrons. The ‘electron clouds’

are taken to be negatively charged since the electrons are negatively charged, so

electron clouds repel one another and try to get as far away from each other as

possible. Instead of considering the electron cloud to consist of negatively charged

electrons, we consider the cloud to be a eigenfield which arranges itself in such a way

that it can exist in a minimum energy state, a state that affects the geometry of the

molecule. In a simple hydrogen atom, for example, the eigenfield will be distributed

symmetrically because, in a three-dimensional space, spherical symmetry represents

the most energy efficient configuration which is equivalent to the electron wavefield

‘experiencing’ a Coulomb potential.

The eigenfunctions that are the solutions to the Schrödinger equation for dif-

ferent materials will not necessarily be complete eigenfunctions. In some cases, so-

lutions only allow for the existence of quasi-eigenfunctions. In conventional atomic

physics, quasi-eigenfunctions are incomplete standing waves more commonly referred

to a delocalised electrons. These are electrons that exist in the ‘lattice’ of a ma-

terial but are free to move and provides a material with the property we refer to

as conductivity. This includes materials such as various metals and chemicals (e.g.

Benzene which is composed of a ring of delocalised electrons). The principle differ-

ence between an eigenfield and a quasi-eigenfield, is that a quasi-eigenfield has an

energy spectrum, albeit a narrow one.

The Schrödinger scattering function for matter waves is

γ =
2mc2

0(E− Ep)
E2 − 1.

In a macroscopic sense, Ep is the total potential energy associated with all the nuclei

from which a material of compact support is composed and E is the total energy

associated with the electrons. In the case of elements such as gold, the arrangement

of electrons around the nucleus is such that a single electron occupies the outermost

shell and is an example of a quasi-eigenfield, i.e. a relatively free wavefield (a free

electron) that is only loosely bound to the host atom. Successive energy levels are

contained in a small energy range dE and are so close that, in effect, a continuous

energy spectrum is formed. Each energy level in this spectrum can accommodate a

left-travelling and right-travelling wave (‘spin-up’ and ‘spin-down’ electrons - Pauli’s

principle) and these free electrons will distribute themselves throughout the energy

band from 0 to some value E. Irrespective of any particular system, the number of
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possible modes of oscillation per unit volume dn in a frequency range ν to ν + dν

for waves with a propagation velocity of c is given by

dn =
4πν2dν

c3 .

With E = p2/(2m) = h̄ω and p = h̄ω/c = E/c, then

dp =
h̄dω

c
and dE =

p
m

dp = h̄dω.

The number of states per unit volume in the energy interval dE is therefore

dn(E) =
(2m3)

1
2 E

1
2

2π2h̄3 dE

and thus, the total number of electrons per unit volume in the energy spectrum

(0, E) is6

n(E) = 2
(2m3)

1
2

2π2h̄3

E∫
0

E
1
2 dE = 2

(2m3)
1
2

3π2h̄3 E
3
2 .

Here m is taken to be the mass of an electron. Note that if the material is in a

‘ground state’ then the available electrons will occupy the lowest possible energy

level. Further, if the total number of electrons per unit volume is less than the

total number of energy levels available in a band (the bandwidth of the material),

then the electrons can occupy all energy states up to a maximum energy Emax - the

Fermi Energy. In this sense, the Fermi energy defines the (energy) bandwidth of a

(conductive) material composed of a quasi-eigenfield.

With an atomic number of 79, gold is the heaviest of the most conductive

elements in the periodic table, i.e. the product of the conductivity with the atomic

number (∼ 3.57× 107cmΩ) for gold is larger than any other element. If it were

possible to reduce the total energy associated with the total quasi-eigenfield of gold

such that E < Ep, then the result would be a scattering function that is negative.

This requires the Fermi energy of gold to be reduced, the most influential factors

being temperature and volume. Clearly, if the number of electrons per unit volume

n is reduced then so is the Fermi energy. In terms of a physical material, n is

determined by the number of atoms defining the physical extent of the material.

This suggests an experimental investigation of the cryogenic properties of M-state

(mono-atomic) gold. M-state gold is a white powder and is an example of a nano-

material where each of the nano-metre size grains are clusters of a few hundred

atoms. Like other M-state materials, the surface area is huge compared to the

metallic (macro-crystalline) form. Thus, with the volume of each grain being small

enough and the temperature of the material being low enough, it may be possibly

to reduce the Fermi energy to an extent where E < Ep for the material as a whole.

6 The factor of 2 is because of Pauli’s principle.
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9.15 Discussion

The results developed in this chapter encapsulate a phenomenology where the Helmholtz

equation is, in effect, being used in an attempt to develop a unified scalar wavefield

theory where the wavefield u(r, ω) is taken to exist over a broad range of frequencies

limited only by the Planck frequency. At very high frequencies, u is taken to de-

scribe matter waves which are characterised by relativistic (Klein-Gordon and Dirac

equations) and non-relativistic energies (Schrödinger equation) associated with nu-

clear and atomic physics respectively. At intermediate frequencies, u is taken to

describe waves in the ‘electromagnetic spectrum’ and at low frequencies, u is taken

to describe waves in the ‘gravity wave spectrum’.

The structure of matter, the characteristics of light and other electromag-

netic radiation and the properties of gravity become phenomenologically related via

Helmholtz scattering over different frequency bands. Low frequency waves (gravity

generating waves) are scattered by high frequency waves (matter waves) to produce

a gravitational field; intermediate frequency waves (electromagnetic spectrum) are

scattered by high frequency waves (e.g. a lens) but can also be scattered by the

field generated from the scattering of low frequency waves to produce gravitational

diffraction. In this sense, ‘physics’ becomes the study of waves interacting with

waves at vastly different frequencies, the breadth of the spectrum ‘reflecting’ the

instantaneous birth of the universe - the ‘big-bang’ - since it requires (noting that

the Fourier transform of a δ-function is a constant over all frequency space) a short

impulse to generate a broad frequency spectrum. However, in attempting to derive

a ‘wavefield theory of everything’ we must re-interpret the nature of an electric field

using the principle of eigenfield tendency. Thus, instead of contemplating an elec-

tron in terms of a particle with a negative charge that ‘radiates’ an electric field

and is attracted to particles with a positive charge (which also ‘radiate’ an electric

field), we can visualise an electron in terms of a wave which is ‘attracted’ by the

‘requirement’ (through the minimum energy principle) of becoming an eigenfunction

(a standing wave with lower energy than a free wave) whose properties are deter-

mined by the potential energy associated with the atomic nucleus which is itself, a

higher (nuclear) frequency eigenfield system (quarks).

The form of the wave equation(
∇2 − 1

c2
∂2

∂t2

)
U(r, t) = 0

dictates that c must be of finite value. If a wavefield (whatever the wavefield may

be) was to convey information from one point in space to another instantaneously,

then the second term of the above equation would be zero; the ‘wave equation’

would be reduced to ‘Laplace’s equation’ ∇2u = 0. Einstein’s principal postulate is

that the upper limit at which any wavefield can propagate is the speed of light c0
in a perfect vacuum and thus c ≤ c0. In a more general perspective, the rationale

associated with the fact that c must have a finite upper bound is that the influence

of any physical wavefield on any measurable entity can only occur in a finite period
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FIGURE 39 Example of fractal waves by the Japanese artist K Hokusai from the 1800s
illustrating waves of different scale in both amplitude and wavelength.

of time and that there can be no such thing as instantaneous ‘action at a distance’,

i.e. as Issac Newton put it: That one body may act upon another at a distance

through a vacuum, without the mediation of anything else, by and through which

their action and force may be conveyed from one to the other, is to me so great an

absurdity, that I believe no man who has in philosophical matters a competent faculty

of thinking, can ever fall into it. Taking Newton’s own term, mediation requires the

propagation (of information), but propagation at infinite speeds is not propagation

and thus, we postulate that instantaneous fields are not possible, i.e. the speed

at which a wavefield propagates must be finite for a wavefield to exist. In this

context, the results developed for this thesis highlight the idea that the ‘physics’ of

a wavefield is more fundamental than the ‘physics’ of a field. This principle should

be considered in light of the fact that the one property common to the principal

field equation of physics (e.g. Einstein’s equations, Maxwell’s equations, Proca’s

equations), is that they all describe wave phenomena - at least in an ‘indirect’ sense.

In the case of Proca’s equations, the field equations are derived with the singular aim

of ensuring that they can be decoupled to yield the inhomogeneous Klein-Gordon

(wave) equation.

9.15.1 Fractal Wave Model

The underlying philosophy associated with the approach considered, is based on a

‘waves within waves’ model, i.e. to quote an old Chinese proverb ‘In every way, one

can see the shape of the sea’. This is a universal self-affine or fractal model in which

the ‘fractal field’ is a scalar wavefield, a symbolic representation of the idea being

given in Figure 39. As the frequency increases, a wavefield tends to become an

eigenfield. This principle is required to explain the structure of matter and much of

the discussion given in Section 9.13 is quantum mechanics revisited without the need
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to define an electric field in terms of a charge. If we consider the structure of matter

at the atomic, nuclear and sub-nuclear scales (indeed at all scales down to the scale

of the Planck length) to be determined by eigenfields, then the question remains as

to why eigenfield systems should ‘kick-in’ at the atomic scale? If the principle of

eigenfield tendency applies at all frequencies then why do we not observe equivalent

naturally occurring eigenfield systems in the electromagnetic spectrum? Perhaps we

do under special circumstances, e.g. ball-lightning.

The approach to unification considered has yielded a number of questionable

and speculative results. The only experimental evidence offered in confirmation to

our model for a gravitational field is a possible explanation as to why the Einstein

rings associated with near field galaxies observed by the Hubble Space Telescope

are blue. However, it should be noted that this ‘evidence’ is most typical of Carl

Popper’s principle that all observation statements are ‘theory laden’ and that other

explanations may be possible that are more appropriate in terms of established

physical models.

In general relativity, the curvature of space-time bends light by the same

amount irrespective of the frequency - there is no dispersion relation. The λ−6

scaling law associated with gravitational diffraction may be validated (or otherwise)

from appropriate simultaneous observations of the same Einstein ring (complete or

otherwise) at different wavelengths. Other consequences such as a gravitational field

generating a repulsive force that is proportional to the mass squared in the relativis-

tic case remain of theoretical consequence only. However, it is noted that inflation

theory (the expansion of the early universe) requires gravity to be a repulsive force.

The model considered leads to the proposition that a gravity field is regenera-

tive and exists through the continuous scattering of existing low frequency Helmholtz

wavefields. This proposition may provide an answer to the following question: If

nothing can escape the event horizon of a black hole because nothing can propagate

faster than light then how does gravity get out of a black hole? The conventional

answer to this question is that the field around a black hole is ‘frozen’ into the sur-

rounding space-time prior to the collapse of the parent star behind the event horizon

and remains in that state ever after. This implies that there is no need for continual

regeneration of the external field by causal agents. In other words, the explanation

defies causality. In the model presented here, the gravitational field generated by a

black hole or any other body is the result of a causal effect - the scattering of low

frequency scalar waves. In this sense, a black hole is just a stronger scatterer than

other cosmological bodies and a gravitational field ‘gets out of a black hole’ because

it was never ‘in the black hole’ to start with.

9.15.2 Propagative Theories

Propagative or wave theories of gravity have been proposed for many years. In 1805,

Laplace proposed that gravity is a propagative effect and considered a correction to

Newton’s law to take into account the observation that gravity has no detectable

aberration or propagation delay for its action. Laplace’s ideas were advanced further

by Weber, Riemann, Gauss and Maxwell in the Nineteenth Century using a variety
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of ‘corrective terms’. In 1898, Gerber, developed a propagative theory that took into

account the perihelion advance of mercury and in 1906 Poincaré showed that the

Lorentz transform cancels out gravitational aberration. After the success of general

relativity (1916) for explaining gravity in terms of a geometric effect, propagation

theories were discarded. However, more recently, attempts at explaining gravity

in terms of causal effects through a ‘propagative’ force have been revisited [81] as

debate over the basic Einsteinian postulates7 has intensified. Moreover, from Laplace

to the present, propagation theories of gravity consider an object to be ‘radiating’

a field (in a passive sense). If general relativity considers gravity to be the result of

an object warping space-time, then the proposition reported is that gravity is the

result of an object scattering (long wavelength) waves that already exist as part of

the low frequency component of a universal spectrum which is, itself, the by-product

of the ‘big-bang’.

9.15.3 Compatibility with General Relativity

The compatibility of this approach with general relativity can be realised if the

wavefield as taken to warp space-time so that space-time is the medium of prop-

agation. Only at very large wavelengths does the warping of space-time become

so pronounced and over such a large scale that Einstein’s field equations can then

be used to describe the physics associated with the geometry of the field. In other

words, if space-time is taken to be the medium of propagation of all (scalar) wave-

fields at all frequencies, then the theory of general relativity emerges naturally as

k→ 0. A two-dimensional and qualitative illustration of this idea is given in Figure

40 which shows four frames of a simple two-dimensional wave function as k → 0.

It is assumed that the wavefunction is due to the scattering of a plane wave from

a delta function located at the centre of the surface. If space is taken to be the

medium of propagation which undergoes curvature as a wave propagates through

it then Figure 40 can be taken to illustrate the curvature of a two-dimensional

space into a three dimensional space at increasingly lower frequencies. As k→ 0 the

wavefield is replaced by what appears to be a static curved space manifold within

the locality of a low frequency scattering event. The curvature of this manifold is

the taken to be responsible for generating a gravitation force which is attractive in

terms of the influence of one mass upon another and is compounded in terms of

Einstein’s field equation, i.e.

Rµν −
1
2

gµνR + gµνΛ =
8π

c4 Tµν

where Rµν is the Ricci curvature tensor, R is the scalar curvature, gµν is the metric

tensor, Λ is the consmological constant, G is the gravitational constant, c is the

speed of light and Tµν is the stress-energy tensor [56].

Any propagation theory of gravity must address some basic known observa-

tions:

7 The invariance of the propagation of light in a vacuum for any observer which amounts to
a presumed absence of any preferred reference frame.
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FIGURE 40 Qualitative illustration of the function −Re[cos(kr)/r], r =
√

x2 + y2 for
four frames as k→ 0 (from left to right and from top to bottom).

� Gravity has no detectable aberration or propagation delay for its action leading

to effects predicted by general relativity such a gravitomagnetism;

� the finite propagation of light causes radiation pressure for which gravity has

no counterpart pressure.

These results represent the most vital evidence with regard to gravity being a ge-

ometric and not a propagative effect. For example, in an eclipse of the Sun, the

gravitational pull on the earth by this 3-body (Sun-Moon-Earth) configuration in-

creases. By comparing the delay in time it takes to observe the visible maximum

eclipse on Earth (which can be calculated from knowledge of the distance of the

Moon from the Earth) with the equivalent gravitational maximum, then if gravity

is a propagating force, it appears to propagates at least 20 times faster than light!

[82] Irrespective of whether this value is valid or not, a fundamental issue remains,

which is compounded in the question: what is the speed of gravity? If we consider

gravity to be a propagation and/or a low frequency scattering effect, then in order

to account for the lack of propagation delay, it must be assumed that the speed of

gravity is greater than the speed of light. This is contrary to the Einsteinian pos-

tulates if these postulates are taken to apply to all wavefields irrespective of their

wavelength. The model presented here assumes that the speed of gravity is the

same as the speed of light c0. However, the asymptotic result k → 0 used to define

a gravitational field yields, what will appears to be, an instantaneous effect from a

wavefield that is taken to propagate at the speed of light. The wavelength is so long
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compared to the distances associated with a Sun-Moon-Earth system, for example,

that the speed of gravity will appear to be significantly faster than the speed of light

(i.e. U0
s is observed to be an instantaneous field).

9.16 Final Comments

In terms of the fractal wavefield model considered here, the gravitational force is

a consequence of very long wavelength waves and is therefore a long range force.

Electromagnetism is a consequence of intermediate wavelength waves which exist as

both free wavefields and eigen wavefields at the atomic scale, the transition from one

to the other creating an ‘electric field’. The strong force is a consequence of a nuclear

eigen wavefield where the values of E = h̄ω and p = h̄k are in the relativistic energy

limit. The weak force (associated with radioactive decay, for example) is explained

in terms of the transformation of a nuclear eigen wavefield to a more stable form

allowing for the emission of a free wavefield (quantum ’tunneling effect’ when the

potential barrier is low). For example, Rutherford scattering (the scattering of

alpha particles from gold nuclei which historically provided the basic model for the

atom) is an example of a free (nuclear) wavefield, interacting with a stable eigenfield

system which consequently appears to exert a repulsive Coulomb force. At this

frequency range the governing equation is Schrödinger’s equation which has a far

field scattering amplitude determined by the three-dimensional Fourier transform of

a Coulomb potential. Thus, as a function of the scattering angle θ

A(θ) =
2π

k sin
(

θ
2

) ∞∫
0

sin
[

2kr sin
(

θ

2

)]
γ(r)rdr

and for the screened Coulomb potential8

γ(r) =
exp(−ar)

r
, a > 0

we obtain (for a→ 0)

A(θ) =
π

k2 sin2
(

θ
2

)
1 +

a2[
2k sin

(
θ
2

)]2


−1

=
π

k2 sin2
(

θ
2

) .

The intensity (scattering cross-section) is therefore inversely proportional to

sin4(θ/2) which is the basic ‘signature’ of Rutherford scattering. In terms of neutron

scattering, a neutron is a free nuclear wavefield which, during its life time, is unable

to combine with an existing nuclear eigen wavefield until it does, in some cases

producing unstable nuclear eigen wavefield systems which transform into new stable

systems involving the emission of free wavefields, i.e. nuclear fission.

8 Required in order evaluate the integral over r.
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Note that the principle of eigenfield tendency in which free wavefields tend

to become eigen wavefield in order to achieve a minimum energy is equivalent to

the least action principle. In field theory - in this case, the wavefield U(r, t) - the

Lagrangian density L is a functional that is integrated over all space-time, i.e.

S [U] =
∫ ∫

L[U, ∂µU]d3rdt

where, using ‘relativistic notation’,

∂µ = (∂0;∇), ∂µ = (∂0;−∇),

∂0 =
1
c

∂

∂t
and ∂µ∂µ =

1
c2

∂2

∂t2 −∇
2.

The Lagrangian is the spatial integral of the density and application of the least

action principle yields the Euler-Lagrange equations

δS
δU

= −∂µ

(
∂L

∂(∂µU)

)
+

∂L
∂U

= 0

which are then solved for U.

The wavefield approach adopted is consistent with the basic concepts asso-

ciated with the Grand Unified Theories of C H Tejman [83] and in one sense, we

have attempted to explain the example images given in Figure 36 using a single phe-

nomenological model. Just as Poisson used a wave model to explain the Poisson spot

without reference to light being an electromagnetic wave (Maxwell’s equations for

an electric and magnetic field which Poisson did not know of at the time), so we have

attempted to explain both a Poisson spot and an Einstein ring without reference to

general relativity (Einstein’s equation for a gravitational field). The problem then

remains of how to ‘formally recover’ Maxwell’s equations and Einstein’s equations

from a single wave theoretic model.



10 DISCUSSION AND CONCLUSIONS

10.1 Discussion

The principal theme of this thesis has been to explore the EM scattering problem

in an attempt to develop models that incorporate strong scattering for which the

inverse scattering problem becomes a feasible proposition. Four approaches have

been considered in this respect:

� implementation of the exact inverse scattering solutions considered in Chapter

6;

� application of diffusion models as discussed in Chapter 7;

� application of fractional diffusion to model the intermediate case as given in

Chapter 8;

� low frequency scattering as considered in Chapter 9.

The exact inverse scattering theory considered is based on modifying the inhomoge-

neous Helmholtz equation to the form

−k2γ(r) =
u∗(r, k)
| u(r, k) |2∇

2
(

us(r, k)− k2

4πr
⊗3 us(r, k)

)
For far field applications (the most typical case), given that

‖us − (k2/4πr)⊗3 us‖2 ≤ ‖us‖2[1 + k2
√

r/(4π)],

we have considered the result

−k2γ =
−1

u±i + us
k2us ⊗3∇2

(
1

4πr

)
= k2 | u±i + us |−2 [(u±i )∗ + u∗s ]us, r → ∞

Working in one-dimension, this result has led to a model for the signal s(t) generated

by a pulse-echo system (with Impulse Response Function p(t) and carrier frequency

ω0) of the form

s(t) = p(t)⊗ [εr(t)− 1] exp(−iω0t) + p(t)⊗ [| s(t) |2 exp(−iω0t)]
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where εr(t) is the inhomogeneous permittivity profile as a function of the two-way

travel time t. The second term in the above expression is taken to be the component

due to multiple scattering processes which contributes to the noise term in the

conventional model for a signal under the weak scattering approximation. However,

this result relies on the condition that the band-width of the Impulse Response

Function is significantly small compared to the carrier frequency and thus, the result

conforms to side-band systems only. The result is also based on the assumption

that | u±i + us |−2∼ 1 and in order to compute the signal, it is necessary to iterate.

However, the inverse scattering solution is not iterative and can be applied directly

to evaluate the permittivity profile γ(t) given s(t).

Application of the diffusion based models developed in Chapter 7 is accom-

plished using the following transformation from the wave equation to the diffusion

equation: (
∇2 − 1

c2
∂2

∂t2

)
u(r, t) = 0, u(r, t) = φ(r, t) exp(iωt)

↓(
∇2 − 1

D
∂

∂t

)
| φ(rt) |2= 0

under the conditions that∣∣∣∣∂2φ

∂t2

∣∣∣∣ << 2ω

∣∣∣∣∂φ

∂t

∣∣∣∣ and Re[∇ · (φ∇φ∗)] = 0

The principal condition associated with this transformation is that the field φ varies

significantly slowly in time compared with exp(iωt).

Inverse solutions to the problem ‘Given | φ(r, t = T) |2 compute | φ(r, t =
0) |2’ have been developed which are compounded in the implementation of well

defined Finite Impulse Response filters of different order according to a Taylor series

expansion of | φ(r, t = T) |2. This diffusion based approach provides a method

of solving the inverse scattering problem for strong scattering interactions. This

is because the diffusion equation is based on a random walk process in which the

scattering angle is uniformly distributed as in the calculation of the K-distribution

given in Section 7.2.

In Chapter 8, the problem is modelling intermediate scattering has been con-

sidered based on the following transformation from the diffusion to the fractional

diffusion equation: (
∇2 − 1

D
∂

∂t

)
| φ(r, t) |2= 0

↓(
∇2 − 1

Dq
∂q

∂tq

)
| φ(r, t) |2= 0

where 1 < q < 2. The use of fractional calculus has then be explored to obtain a

Green’s function for this equation. This is an entirely phenomenological approach

based on the concept of a random walk with a directional bias as presented in

Sections 8.1 and 8.2.
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The ideas developed in Chapter 9 were originally based on considering low fre-

quency scattering theory given that the Born series solution to the inhomogeneous

Helmholtz equation can be reduced to a single and exact scattering transform for

the case when k→ 0. However, although this asymptotic solution provides an exact

scattering transform (and thereby an exact inverse scattering transform), it is not of

any practical significance in imaging systems engineering. Instead, Chapter 9 devel-

ops a hypothesis which extends beyond the original scope of this thesis and considers

the foundations of an approach to developing a unified wavefield theory based on

the premise that all physical forces are manifestations of wavefields interacting with

other wavefields over a broad frequency spectrum. This hypothesis is based on a

philosophical extension of the idea that lies behind the Maxwell-Proca equations

in which Proca introduces new terms into Maxwell’s equations in order that they

decouple to produce a relativistic wave equation (the Klein-Gordon equation) rather

than a non-relativistic wave equation.

10.2 Conclusions

Of the material presented in this work, the most innovative is the use of the fractional

diffusion equation to model intermediate scattering events. In terms of the theory

of scattering from deterministic media and compatibility with the imaging equation,

the Born approximation represents a central theme. The exact inverse scattering

theory developed for this thesis (in Chapter 4) and investigated further in Chapter

6 provides the potential for improving image reconstruction and image processing

methods in general. For example, a principal result of the material presented in

Chapter 6 is that speckle reduction is in coherent pulse-echo imaging systems should

be applied to the complex data before the amplitude image is computed in order to

reduce the cross terms associated with single and multiple scattering processes.

With regard to the EM scattering from random media, three approaches have

been reviewed:

� application of weak scattering theory to a random scatterer which can be cast

in terms of computing the Fourier transform of a cross-correlation function

model for the random scatterer;

� application of statistical modelling methods for computing the PDF of the

scattered intensity based on random walk models applied to the amplitude

and phase;

� application of the diffusion equation

The use of the weak scattering approximation for scattering from random media

suffers from limitations in that multiple scattering is assumed to be negligible. Direct

statistical modelling is therefore preferable as it can take into account the case of

multiple scattering processes. However, while this approach may provide a valid

model for the PDF of a signal or image that can be used for statistical image
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analysis, for example, it is not of value in developing inverse scattering solutions

that are of value to processing a signal or image for the retrieval of information.

On the other hand, application of diffusion models for strong scattering leads to

inverse solutions (FIR filters) that can be used to reconstruct an image. For this

reason, the fractional diffusion equation has been used to develop inverse solutions

to the generalised problem and one of the principal conclusions of this thesis is that

fractional diffusion models provide a useful generalised approach to modelling EM

scattering problems that has practical value in the processing and interpretation of

EM signals and images.

10.3 Open Problems

1. Development of an intermediate scattering theory based on taking the Fresnel

transform of equation (4.8)

γ = A−1[(u±i )∗ + u∗s ]us, A−1 =| u±i ) + us |−2

under application of the condition Ã−1 and the Skew Hermitian condition

considered in Sections 4.8.1 and 4.8.2 using the Fourier transform.

2. Development of a near-field scattering theory using equation (4.7)

−k2γ(r) =
u∗(r, k)
| u(r, k) |2∇

2
(

us(r, k)− k2

4πr
⊗3 us(r, k)

)
based on application of the convolution transform

γ(r)⊗3 g(r, k)u±i (r, k)

for the computation of us.

3. The simulations undertaken in Section 4.8.3 have been based on considering

the first order iteration to compare the scattered field under the Born approx-

imation with the effect of multiple scattering defined in terms of the autocon-

volution of a Born scattered field. The effect of undertaking further iterations

should be investigated and the relationship of each iteration with the physical

nature of the scattered field quantified and compared with the interpretation

of Born series given in Section 4.5.1.

4. Computation of the scattered field using the complex scattering function−k2γ +
ikz0σ.

5. Application of the exact inverse scattering solutions developed in Chapter 4

(based on the material given in Appendix 1) for designing image reconstruction

algorithms used in diffraction tomography and other optical and electromag-

netic imaging system.
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6. Coherent signal extraction based on the strong scattering model developed in

Chapter 6, i.e.

s(t) = p(t)⊗ [γ(t) exp(−iω0t)] + n(t)

where

n(t) = p(t)⊗ [| s(t) |2 exp(−iω0t)]

and a systematic analysis of the performance for de-noising coherent signals

based on this model.

7. Extension of the weak scattering SAR model developed in Chapter 5 to include

strong scattering effects based on the model developed in Chapter 6.

8. Extension of random Born scattering model considered in Section 7.1 to in-

clude multiple scattering effects based on equation (4.8) and comparison of the

statistical properties of the field with K-scattering discussed in Section 7.2.

9. Derivation of diffusion based models (as discussed in Section 7.3) for coherent

scattering processes and associated inverse solutions.

10. Application of fractional diffusion models for processing coherent signals and

images generated by the scattering of coherent radiation from random media

for intermediate strength scattering processes.

11. Derive fractional diffusive models that are based on more fundamental prin-

ciples and associated derivations than the phenomenological arguments pre-

sented in Section 8.2

12. Experimental verification or otherwise of the λ−6 scaling law for the diffraction

of electromagnetic waves by a gravitational field.
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APPENDIX 1 EXACT INVERSE SCATTERING SOLUTIONS

APPENDIX 1.1 Exact Inverse Scattering Solution in One-Dimension

Consider the 1D inhomogeneous Helmholtz equation for a scalar (complex) wavefield

u(x, k) given by(
∂2

∂x2 + k2
)

u(x, k) = −k2γ(x)u(x, k), x ∈ (−∞, ∞)

where k > 0 is the wavenumber (taken to be a constant) and the scattering function

may be of compact support, i.e.

γ(x)∃∀x ∈ [−X, X].

The Forward Scattering Problem is defined as follows: Given γ(x)∀x find an exact

solution for u(x, k) The Inverse Scattering Problem is defined as follows: Given

u(x, k)∀x find an exact solution for γ(x).

APPENDIX 1.1.1 Theorem

Given that the (forward scattering Green’s function) solution to the Helmholtz equa-

tion (as defined above) is

u(x, k) = ui(x, k) + us(x, k) (A1.1)

where ui is a solution of (
∂2

∂x2 + k2
)

ui(x, k) = 0,

us(x, k) = k2g(| x |, k)⊗ γ(x)u(x, k)

≡ k2
∞∫
−∞

g(| x− y |, k)γ(y)u(y, k)dy (A1.2)

and

g(| x− y |, k) =
i

2k
exp(ik | x− y |)

which is the (outgoing Green’s function) solution of(
∂2

∂x2 + k2
)

g(| x− y |, k) = −δ(x− y),

then

γ(x) =
u∗(x, k)
| u(x, k) |2

∂2

∂x2

[
R(x)⊗ us(x, k)− 1

k2 us(x, k)
]

.

where (c1 and c2 being arbitrary constants)

R(x) =

{
(c1 − 1)x + c2, x > 0;
0, otherwise.
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APPENDIX 1.1.2 Proof

From equations (A1.1) and (A1.2), we can write

(u− ui) = k2g⊗ γu.

Consider a piecewise continuous function q that is twice differentiable, such that

q⊗ (u− ui) = k2q⊗ g⊗ γu.

Differentiating twice, we have

∂2

∂x2 [q⊗ (u− ui)] = k2 ∂2

∂x2 (q⊗ g⊗ γu)

= k2 ∂2

∂x2 (q⊗ g)⊗ γu = −k2δ⊗ γu = −k2γu

provided
∂2

∂x2 (q⊗ g) = −δ.

But
∂2

∂x2 (q⊗ g) = q⊗ ∂2

∂x2 g

= q⊗ (−k2g− δ) = −k2q⊗ g− q = −δ

and hence

q = δ− k2q⊗ g

so that
∂2

∂x2 [q⊗ (u− ui)] =
∂2

∂x2 [δ⊗ (u− ui)− k2q⊗ g⊗ (u− ui)]

=
∂2

∂x2 [(u− ui)− k2q⊗ g⊗ (u− ui)] = −k2γu.

Thus,

γ =
1
u

∂2

∂x2

[
q⊗ g⊗ (u− ui)−

1
k2 (u− ui)

]
The function q is determined by the solution of

∂2

∂x2 (q⊗ g) = −δ

=⇒ ∂

∂x
(q⊗ g) = −H(x) + c1 (A1.3)

where

H(x) =

{
1, x > 0;
0, otherwise.

and c1 is a constant. But the solution of equation (A1.3) is

q⊗ g = R(x)
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where (c2 being a constant of integration)

R(x) = −
x∫

−∞

H(x)dx + c1x + c2

=

{
(c1 − 1)x + c2, x > 0;
0, otherwise.

so that

γ =
1
u

∂2

∂x2

[
R⊗ (u− ui)−

1
k2 (u− ui)

]
.

Finally, since u = ui + us, we can write

γ =
1
u

∂2

∂x2

[
R⊗ us −

1
k2 us

]

=
u∗

| u |2
∂2

∂x2

[
R⊗ us −

1
k2 us

]
. (A1.4)

APPENDIX 1.1.3 Corollary

Since (
∂2

∂x2 + k2
)

ui = 0.

it follows that (for c1 < 1)

γ =
1
u

∂2

∂x2

[
R⊗ (u− ui)−

1
k2 (u− ui)

]
=

1
u

[
−δ⊗ (u− ui)−

1
k2

(
∂2

∂x2 u− ∂2

∂x2 ui

)]
=

1
u

[
−(u− ui)−

1
k2

∂2

∂x2 u +
1
k2

∂2

∂x2 ui

]
=

1
k2u

[
−
(

∂2

∂x2 u + k2u
)

+
∂2

∂x2 ui + k2ui

]
= − 1

k2u

(
∂2

∂x2 + k2
)

u.

which recovers the Helmholtz equation(
∂2

∂x2 + k2
)

u = −k2γu.

APPENDIX 1.1.4 Remark I.1

The equivalent inverse solution for the Schrödinger equation(
∂2

∂x2 + k2
)

u(x, k) = γ(r)u(x, k)
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is

γ =
u∗

| u |2
∂2

∂x2

[
us − k2R⊗ us

]
. (A1.5)

APPENDIX 1.1.5 Remark I.2

The inverse solutions given by equations (A1.4) and (A1.5) rely on the condition:

| u(x, k) |=| ui(x, k) + us(x, k) |> 0∀x, k.

Thus, for a fixed wavenumber k > 0, the incident ui and scattered us wavefields

must be ‘out-of-phase’ ∀x.

APPENDIX 1.1.6 Remark I.3

The theorem provides a result that is compatible with the trivial inverse solution

γ = − u∗

| u |2

(
1 +

1
k2

∂2

∂x2

)
u.

However, unlike this trivial solution, the theorem provides an expression for the

scattering function γ which is, at least, consistent with the (exact) forward scattering

(Green’s function) solution u = ui + us and is determined by the scattered wavefield

us = k2g⊗ γu that, like the incident wavefield ui, is assumed to be a measurable

quantity.

APPENDIX 1.1.7 Remark I.4

In order to use this inverse solution, the wavefield u must be known ∀x. For a

scatterer of compact support, the field may only be measurable beyond this support

and thus, the data on u may be incomplete.

APPENDIX 1.2 Exact Inverse Scattering Solution in Three-Dimensions

APPENDIX 1.2.1 Theorem

Consider the 3D inhomogeneous Helmholtz equation for a scalar (complex) wavefield

u(r, k) given by

(∇2 + k2)u(r, k) = −k2γ(r)u(r, k)

where k is the wavenumber and the scattering function is of compact support, i.e.

γ(r)∃∀r ∈ V.

Given that the forward (Green’s function) solution to this equation is

u(r, k) = ui(r, k) + us(r, k) (A1.6)
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where ui is a solution of

(∇2 + k2)ui(r, k) = 0,

us(r, k) = k2g(| r |, k)⊗3 γ(r)u(r, k)

≡ k2
∫
V

g(| r− s |, k)γ(s)u(s, k)d3s (A1.7)

and

g(| r− s |, k) =
exp(ik | r− s |)

4π | r− s |
which is the solution of

(∇2 + k2)g(| r− s |, k) = −δ3(r− s),

then, with r ≡| r |,

γ(r) =
u∗(r, k)
| u(r, k) |2∇

2
[

1
4πr
⊗3 us(r, k)− 1

k2 us(r, k)
]

.

APPENDIX 1.2.2 Proof

From equations (A1.6) and (A1.7), we can write

(u− ui) = k2g⊗3 γu.

Consider a function q such that

q⊗3 (u− ui) = k2q⊗3 (g⊗3 γu).

Taking the Laplacian of this equation, we have

∇2[q⊗3 (u− ui)] = k2∇2(q⊗3 g⊗3 γu)

= k2∇2(q⊗3 g)⊗3 γu = −k2δ3 ⊗3 γu = −k2γu

provided

∇2(q⊗3 g) = −δ3.

But

∇2(q⊗3 g) = q⊗3∇2g = q⊗3 (−k2g− δ3)

= −k2q⊗3 g− q = −δ3

and hence

q = δ3 − k2q⊗3 g

so that

∇2[q⊗3 (u− ui)] = ∇2[δ3 ⊗3 (u− ui)− k2q⊗3 g⊗3 (u− ui)]

= ∇2[(u− ui)− k2q⊗3 g⊗3 (u− ui)] = −k2γu.
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Thus,

γ =
1
u
∇2
[

q⊗3 g⊗3 (u− ui)−
1
k2 (u− ui)

]
where q is determined by the solution of

∇2(q⊗3 g) = −δ3. (A1.8)

But the solution of equation (A1.8) is

q⊗3 g =
1

4πr

so that

γ =
1
u
∇2
[

1
4πr
⊗3 (u− ui)−

1
k2 (u− ui)

]
.

Finally, since u = ui + us, we can write

γ =
1
u
∇2
[

1
4πr
⊗3 us −

1
k2 us

]

=
u∗

| u |2∇
2
[

1
4πr
⊗3 us −

1
k2 us

]
. (A1.9)

APPENDIX 1.2.3 Corollary

Since

(∇2 + k2)ui = 0.

it follows that

γ =
1
u
∇2
[

1
4πr
⊗3 (u− ui)−

1
k2 (u− ui)

]
=

1
u

[
−δ3 ⊗3 (u− ui)−

1
k2 (∇2u−∇2ui)

]
=

1
u

[
−(u− ui)−

1
k2∇

2u +
1
k2∇

2ui

]
=

1
k2u

[
−(∇2u + k2u) +∇2ui + k2ui

]
= − 1

k2u
(∇2 + k2)u.

which recovers the Helmholtz equation

(∇2 + k2)u = −k2γu.

APPENDIX 1.2.4 Remark II.1

Remarks I.1-I.4 apply to this three dimensional derivation.
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APPENDIX 1.2.5 Remark II.2

In the 2D case, equation (A1.9) becomes

∇2(q⊗2 g) = −δ2

and has the solution

q⊗2 g =
1

2π
ln r

where ⊗2 denotes the two-dimensional convolution integral. The equivalent 2D

inverse solution is then given by

γ(r) =
u∗(r, k)
| u(r, k) |2∇

2
[

1
2π

ln r⊗2 us(r, k)− 1
k2 us(r, k)

]
.

APPENDIX 1.2.6 Remark II.3

Equation A2.9 relies on the boundary condition u(r, , k) = ui(r, k) ∀r ∈ S where S
defines the surface of γ(r) which is taken to be of compact support. The Green’s

function solution to the three dimensional inhomogeneous Helmholtz equation is

u(r, k) = k2
∫
V

gγud3s +
∮
S

(g∇u− u∇g) · n̂d2s.

To compute the surface integral, a condition for the behaviour of u on the surface

S of γ must be chosen. If we consider the case where the incident wavefield ui is a

simple plane wave of unit amplitude

exp(ik · r)

satisfying the homogeneous wave equation

(∇2 + k2)ui(r, k) = 0,

then

u(r, k) = k2
∫
V

gγud3s +
∮
S

(g∇ui − ui∇g) · n̂d2s.

Using Green’s theorem to convert the surface integral back into a volume integral,

we have ∮
S

(g∇ui − ui∇g) · n̂d2s =
∫
V

(g∇2ui − ui∇2g)d3s.

Noting that

∇2ui = −k2ui

and that

∇2g = −δ3 − k2g

we obtain ∫
V

(g∇2ui − ui∇2g)d3s =
∫

δ3uid3s = ui.
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Hence, by choosing the field u to be equal to the incident wavefield ui on the surface

of γ, we obtain a solution of the form

u = ui + us

where

us(r, k) = k2g(| r |, k)⊗3 γ(r)u(r, k).



APPENDIX 2 RELATIONSHIP BETWEEN THE HURST
EXPONENT AND THE TOPOLOGICAL,
FRACTAL AND FOURIER DIMENSIONS

Suppose we cut up some simple one-, two- and three-dimensional Euclidean objects

(a line, a square surface and a cube, for example), make exact copies of them and

then keep on repeating the copying process. Let N be the number of copies that

we make at each stage and let r be the length of each of the copies, i.e. the scaling

ratio. Then we have

NrDT = 1, DT = 1, 2, 3, ...

where DT is the topological dimension. The similarity or fractal dimension is that

value of DF which is usually (but not always) a non-integer dimension ‘greater’ that

its topological dimension (i.e. 0,1,2,3,... where 0 is the dimension of a point on a

line) and is given by

DF = − log(N)
log(r)

.

The fractal dimension is that value that is strictly greater than the topological

dimension as given in Table II. In each case, as the value of the fractal dimension

TABLE 6 Fractal types and corresponding fractal dimensions

Fractal type Fractal Dimension

Fractal Dust 0 < DF < 1
Fractal Curve 1 < DF < 2
Fractal Surface 2 < DF < 3
Fractal Volume 3 < DF < 4
Fractal Time 4 < DF < 5
Hyper-fractals 5 < DF < 6
...

...

increases, the fractal becomes increasingly ‘space-filling’ in terms of the topological

dimension which the fractal dimension is approaching. In each case, the fractal

exhibits structures that are self-similar. A self-similar deterministic fractal is one

where a change in the scale of a function f (x) (which may be a multi-dimensional

function) by a scaling factor λ produces a smaller version, reduced in size by λ, i.e.

f (λx) = λ f (x).

A self-affine deterministic fractal is one where a change in the scale of a function

f (x) by a factor λ produces a smaller version reduced in size by a factor λq, q > 0,

i.e.

f (λx) = λq f (x).

For stochastic fields, the expression

Pr[ f (λx)] = λqPr[ f (x)]
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describes a statistically self-affine field - a random scaling fractal. As we zoom into

the fractal, the shape changes, but the distribution of lengths remains the same.

There is no unique method for computing the fractal dimension. The methods

available are broadly categorized into two families: (i) Size-measure relationships,

based on recursive length or area measurements of a curve or surface using different

measuring scales; (ii) application of relationships based on approximating or fitting

a curve or surface to a known fractal function or statistical property, such as the

variance.

Consider a simple Euclidean straight line ` of length L(`) over which we ‘walk’

a shorter ‘ruler’ of length δ. The number of steps taken to cover the line N[L(`), δ]
is then L/δ which is not always an integer for arbitrary L and δ. Since

N[L(`), δ] =
L(`)

δ
= L(`)δ−1,

⇒ 1 =
ln L(`)− ln N[L(`), δ]

ln δ
= −

(
ln N[L(`), δ]− ln L(`)

ln δ

)
which expresses the topological dimension DT = 1 of the line. In this case, L(`) is

the Lebesgue measure of the line and if we normalize by setting L(`) = 1, the latter

equation can then be written as

1 = − lim
δ→0

[
ln N(δ)

ln δ

]
since there is less error in counting N(δ) as δ becomes smaller. We also then have

N(δ) = δ−1. For extension to a fractal curve f , the essential point is that the fractal

dimension should satisfy an equation of the form

N[F( f ), δ] = F( f )δ−DF

where N[F( f ), δ] is ‘read’ as the number of rulers of size δ needed to cover a fractal

set f whose measure is F( f ) which can be any valid suitable measure of the curve.

Again we may normalize, which amounts to defining a new measure F′ as some

constant multiplied by the old measure to get

DF = − lim
δ→0

[
ln N(δ)

ln δ

]
where N(δ) is taken to be N[F′( f ), δ] for notational convenience. Thus a piece-

wise continuous field has precise fractal properties over all scales. However, for the

discrete (sampled) field

D = −
〈

ln N(δ)
ln δ

〉
where we choose values δ1 and δ2 (i.e. the upper and lower bounds) satisfying

δ1 < δ < δ2 over which we apply an averaging processes denoted by 〈 〉. The

most common approach is to utilise a bi-logarithmic plot of ln N(δ) against ln δ,

choose values δ1 and δ2 over which the plot is uniform and apply an appropriate
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data fitting algorithm (e.g. a least squares estimation method or, as used in this

paper, Orthogonal Linear Regression) within these limits.

The relationship between the Fourier dimension q and the fractal dimension DF
can be determined by considering this method for analysing a statistically self-affine

field. For a fractional Brownian process (with unit step length)

A(t) = tH, H ∈ (0, 1]

where H is the Hurst dimension. Consider a fractal curve covering a time period

∆t = 1 which is divided up into N = 1/∆t equal intervals. The amplitude incre-

ments ∆A are then given by

∆A = ∆tH =
1

NH = N−H.

The number of lengths δ = N−1 required to cover each interval is

∆A∆t =
N−H

N−1 = N1−H

so that

N(δ) = NN1−H = N2−H.

Now, since

N(δ) =
1

δDF
, δ→ 0,

then, by inspection,

DF = 2− H.

Thus, a Brownian process, where H = 1/2, has a fractal dimension of 1.5. For

higher topological dimensions DT

DF = DT + 1− H.

This algebraic equation provides the relationship between the fractal dimension DF,

the topological dimension DT and the Hurst dimension H. We can now determine

the relationship between the Fourier dimension q and the fractal dimension DF.

Consider a fractal signal f (x) over an infinite support with a finite sample

fX(x), given by

fX(x) =
{

f (x), 0 < x < X;
0, otherwise.

A finite sample is essential as otherwise the power spectrum diverges. Moreover, if

f (x) is a random function then for any experiment or computer simulation we must

necessarily take a finite sample. Let FX(k) be the Fourier transform of fX(x), PX(k)
be the power spectrum and P(k) be the power spectrum of f (x). Then

fX(x) =
1

2π

∫ ∞

−∞
FX(k) exp(ikx)dk,
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PX(k) =
1
X
|FX(k)|2

and

P(k) = lim
X→∞

PX(k).

The power spectrum gives an expression for the power of a signal for particular har-

monics. P(k)dk gives the power in the range k to k + dk. Consider a function g(x),

obtained from f (x) by scaling the x-coordinate by some a > 0, the f -coordinate by

1/aH and then taking a finite sample as before, i.e.

gX(x) =
{

g(x) = 1
aH f (ax), 0 < x < X;

0, otherwise.

Let GX(k) and P′X(k) be the Fourier transform and power spectrum of gX(x), re-

spectively. We then obtain an expression for GX in terms of FX,

GX(k) =
∫ X

0
gX(x) exp(−ikx)dx =

1
aH+1

∫ X

0
f (s) exp

(
− iks

a

)
ds

where s = ax. Hence

GX(k) =
1

aH+1 FX

(
k
a

)
and the power spectrum of gX(x) is

P′X(k) =
1

a2H+1
1

aX

∣∣∣∣FX

(
k
a

)∣∣∣∣2
and, as X → ∞,

P′(k) =
1

a2H+1 P
(

k
a

)
.

Since g(x) is a scaled version of f (x), their power spectra are equal, and so

P(k) = P′(k) =
1

a2H+1 P
(

k
a

)
.

If we now set k = 1 and then replace 1/a by k we get

P(k) ∝
1

k2H+1 =
1
kβ

.

Now since β = 2H + 1 and DF = 2− H, we have

DF = 2− β− 1
2

=
5− β

2
.
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The fractal dimension of a fractal signal can be calculated directly from β using the

above relationship. This method also generalizes to higher topological dimensions

giving

β = 2H + DT.

Thus, since

DF = DT + 1− H,

then β = 5− 2DF for a fractal signal and β = 8− 2DF for a fractal surface so that,

in general,

β = 2(DT + 1− DF) + DT = 3DT + 2− 2DF

and

DF = DT + 1− H = DT + 1− β− DT

2
=

3DT + 2− β

2
,

the Fourier dimension being given by q = β/2.



APPENDIX 3 OVERVIEW OF FRACTIONAL CALCULUS

Fractional calculus (e.g. [84], [85], [86], [87], [88]) is the study of the calculus asso-

ciated with fractional differentials and a fractional integrals which, in the main, are

based on generalizations of results obtained using integer calculus. For example, the

classical fractional integral operators are the Riemann-Liouville transform [84]

Îq f (t) =
1

Γ(q)

t∫
−∞

f (τ)
(t− τ)1−q dτ, q > 0

and the Weyl transform

Îq f (t) =
1

Γ(q)

∞∫
t

f (τ)
(t− τ)1−q dτ, q > 0

where

Γ(q) =
∞∫

0

tq−1 exp(−t)dt.

For integer values of q (i.e. when q = n where n is a non-negative integer), the

Riemann-Liouville transform reduces to the standard Riemann integral. This trans-

form is just a (causal) convolution of the function f (t) with tq−1/Γ(q). For fractional

differentiation, we can perform a fractional integration of appropriate order and then

differentiate to an appropriate integer order. The reason for this is that direct frac-

tional differentiation can lead to divergent integrals. Thus, the fractional differential

operator D̂q for q > 0 is given by

D̂q f (t) ≡ dq

dtq f (t) =
dn

dtn [ În−q f (t)].

where

Îq−n f (t) =
1

Γ(n− q)

t∫
−∞

f (τ)
(t− τ)1+q−n dτ, n− q > 0

in which the value of Îq−n f (t) at a point t depends on the behaviour of f (t) from

−∞ to t via a convolution with the kernel tn−q/Γ(q). The convolution process is

dependent on the history of the function f (t) for a given kernel and thus, in this

context, we can consider a fractional derivative defined via the result above to have

memory.

APPENDIX 3.1 The Laplace Transform and the Half Integrator

It informative at this point to consider the application of the Laplace transform to

identify an ideal integrator and then a half integrator. The Laplace transform is
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given by

L̂[ f (t)] ≡ F(p) =
∞∫

0

f (t) exp(−pt)dt

and from this result we can derive the transform of a derivative given by

L̂[ f ′(t)] = pF(p)− f (0)

and the transform of an integral given by

L̂

 t∫
0

f (τ)dτ

 =
1
p

F(p).

Now, suppose we have a standard time invariant linear system whose input is f (t)
and whose output is given by

s(t) = f (t)⊗ g(t)

where the convolution is causal, i.e.

s(t) =
t∫

0

f (τ)g(t− τ)dτ.

Suppose we let

g(t) = H(t) =

{
1, t > 0;
0, t < 0.

Then, G(p) = 1/p and the system becomes an ideal integrator:

s(t) = f (t)⊗ H(t) =
t∫

0

f (t− τ)dτ =
t∫

0

f (τ)dτ.

Now, consider the case when we have a time invariant linear system with an impulse

response function by given by

g(t) =
H(t)√

t
=

{
| t |−1/2, t > 0;
0, t < 0.

The output of this system is f ⊗ g and the output of such a system with input f ⊗ g
is f ⊗ g⊗ g. Now

g(t)⊗ g(t) =
t∫

0

dτ√
τ
√

t− τ
=

√
t∫

0

2xdx
x
√

t− x2

= 2
[

sin−1
(

x√
t

)]√t

0
= π.
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Hence,
H(t)√

πt
⊗ H(t)√

πt
= H(t)

and the system defined by the impulse response function H(t)/
√

πt represents a

‘half-integrator’ with a Laplace transform given by

L̂
[

H(t)√
πt

]
=

1
√

p
.

This result provides an approach to working with fractional integrators and/or differ-

entiators using the Laplace transform. Fractional differential and integral operators

can be defined and used in a similar manner to those associated with conventional

or integer order calculus and we now provide an overview of such operators.

APPENDIX 3.2 Operators of Integer Order

The following operators are all well-defined, at least with respect to all test func-

tions u(t) say which are (i) infinitely differentiable and (ii) of compact support (i.e.

vanish outside some finite interval).

Integral Operator:

Îu(t) ≡ Î1u(t) =
t∫

−∞

u(τ)dτ.

Differential Operator:

D̂u(t) ≡ D̂1u(t) = u′(t).

Identify Operator:

Î0u(t) = u(t) = D̂0u(t).

Now,

Î[D̂u](t) =
t∫

−∞

u′(τ)dτ = u(t)

and

D̂[ Îu](t) =
d
dt

t∫
−∞

u(τ)dτ = u(t)

so that

Î1D̂1 = D̂1 Î1 = Î0.
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For n (integer) order:

Înu(t) =
t∫

−∞

dτn−1...
τ2∫
−∞

dτ1

τ1∫
−∞

u(τ)dτ,

D̂nu(t) = u(n)(t)

and

În[D̂nu](t) = u(t) = D̂n[ Înu](t).

APPENDIX 3.3 Convolution Representation

Consider the function

tq−1
+ (t) ≡| t |q−1 H(t) =

{
| t |q−1, t > 0;
0, t < 0.

which, for any q > 0 defines a function that is locally integrable. We can then define

an integral of order n in terms of a convolution as

Înu(t) =
(

u⊗ 1
(n− 1)!

tn−1
+

)
(t)

=
1

(n− 1)!

t∫
−∞

(t− τ)n−1u(τ)dτ

=
1

(n− 1)!

t∫
−∞

τn−1u(t− τ)dτ

In particular,

Î1u(t) = (u⊗ H)(t) =
t∫

−∞

u(τ)dτ.

These are classical (absolutely convergent) integrals and the identity operator admits

a formal convolution representation, using the delta function, i.e.

Î0u(t) =
∞∫
−∞

δ(τ)u(t− τ)dτ

where

δ(t) = D̂H(t).

Similarly,

D̂nu(t) ≡ Î−nu(t) =
∞∫
−∞

δ(n)(τ)u(t− τ)dτ = u(n)(t).
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On the basis of the material discussed above, we can now formally extend the

integral operator to fractional order and consider the operator

Îqu(t) =
1

Γ(q)

∞∫
−∞

u(τ)tq−1
+ (t− τ)dτ

=
1

Γ(q)

t∫
−∞

u(τ)tq−1
+ (t− τ)dτ

where

Γ(q) =
∞∫

0

tq−1 exp(−t)dt, q > 0

with the fundamental property that

Γ(q + 1) = qΓ(q).

Here, Iq is an operator representing a time invariant linear system with impulse

response function tq−1
+ (t) and transfer function 1/pq. For the cascade connection of

Iq1 and Iq2 we have

Îq1 [ Îq2u(t)] = Îq1+q2u(t).

This classical convolution integral representation holds for all real q > 0 (and for-

mally for q = 0, with the delta function playing the role of an impulse function and

with a transfer function equal to the constant 1).

APPENDIX 3.4 Fractional Differentiation

For 0 < q < 1, if we define the (Riemann-Liouville ) derivative of order q as

D̂qu(t) ≡ d
dt

[ Î1−qu](t) =
1

Γ(1− q)
d
dt

t∫
−∞

(t− τ)−qu(τ)dτ,

then,

D̂qu(t) =
1

Γ(1− q)

t∫
−∞

(t− τ)−qu′(τ)dτ ≡ Î1−qu′(t).

Hence,

Îq[D̂qu] = Îq[ Î1−qu′] = Î1u′ = u

and D̂q is the formal inverse of the operator Îq. Given any q > 0, we can always

write λ = n− 1 + q and then define

D̂λu(t) =
1

Γ(1− q)
dn

dtn

t∫
−∞

u(τ)(t− τ)−qdτ.
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Dq is an operator representing a time invariant linear system consisting of a cascade

combination of an ideal differentiator and a fractional integrator of order 1− q. For

Dλ we replace the single ideal differentiator by n such that

D̂0u(t) =
1

Γ(1)
d
dt

t∫
−∞

u(τ)dτ = u(t) ≡
∞∫
−∞

u(τ)δ(t− τ)dτ

and

D̂nu(t) =
1

Γ(1)
dn+1

dtn+1

t∫
−∞

u(τ)dτ

= u(n)(t) ≡
∞∫
−∞

u(τ)δ(n)(t− τ)dτ.

In addition to the conventional and classical definitions of fractional derivatives

and integrals, more general definitions are available including the Erdélyi-Kober

fractional integral [89]

t−p−q+1

Γ(q)

t∫
0

τp−1

(t− τ)1−q f (τ)dτ, q > 0, p > 0

which is a generalisation of the Riemann-Liouville fractional integral and the integral

tp

Γ(q)

∞∫
t

τ−q−p

(τ − t)1−q f (τ)dτ, q > 0, p > 0

which is a generalization of the Weyl integral. Further definitions exist based on

the application of hypergeometric functions and operators involving other special

functions such as the Maijer G-function and the Fox H-function [88]. Moreover, all

such operators leading to a fractional integral of the Riemann-Liouville type and the

Weyl type to have the general forms (through induction)

Îq f (t) = tq−1
t∫

−∞

Φ
(τ

t

)
τ−q f (τ)dτ

and

Îq f (t) = t−q
∞∫

t

Φ
(

t
τ

)
τq−1 f (τ)dτ

respectively, where the kernel Φ is an arbitrary continuous function so that the

integrals above make sense in sufficiently large functional spaces. Although there are

a number of approaches that can be used to define a fractional differential/integral,
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there is one particular definition, which has wide ranging applications in signal and

image processing and is based on the Fourier transform, i.e.

dq

dtq f (t) =
1

2π

∞∫
−∞

(iω)qF(ω) exp(iωt)dω

where F(ω) is the Fourier transform of f (t).



APPENDIX 4 SCALING LAW FOR A RANDOM SELF-AFFINE
FUNCTION

Self-affine functions are characterised by an amplitude spectral density function of

the type k−q where k =| k | is the spatial frequency. This appendix provides detail

on calculating the n-dimensional (inverse) Fourier transform of such a spectrum

which is compounded in the following theorem:

Theorem If q 6= 2m or −n− 2m where m = 0, 1, 2, ..., then

Fn[rq] =
∞∫
−∞

rq exp(−ik · r)dnr =
(1

2 q + 1
2 n− 1)!

(−1
2 q− 1)!

2q+nπn/2k−q−n

where k and r are the n-dimensional vectors (k1, k2, ..., kn) and (r1, r2, ..., rn) re-

spectively, r ≡| r |=
√

r2
1 + r2

2 + ... + r2
n and k ≡| k |=

√
k2

1 + k2
2 + ... + k2

n. Note

that

Fn[ f (r)] =
∞∫
−∞

f (r) exp(−ik · r)dnr

is taken to mean

∞∫
−∞

∞∫
−∞

...
∞∫
−∞

f (r1, r2, ..., rn) exp[−i(k1r1 + k2r2 + ... + knrn)]dr1dr2..., drn.

Proof The proof of this result is based two results:

(i) If f is a function of r only, then

F(k) =

(
1− ∂2

∂k2
1
− ∂2

∂k2
2
− ...− ∂2

∂k2
n

)N

(2π)n/2
∞∫

0

f (r)rn−1

(1 + r2)N

Jn−2
2

(kr)

(kr)(n/2)−1
dr

where N is a positive integer and J(n−2)/2 is the Bessel function (of order (n− 2)/2).

(ii) For Bessel Functions,

(2π)n/2

k(n/2)−1

∞∫
0

rq+(n/2)

(1 + r2)N Jn−2
2

(kr)dr

=
πn/2(1

2 q + 1
2 n− 1)!(N − 1

2 q− 1
2 n− 1)!

(N − 1)!(1
2 n− 1)!

1F2(1
2 q + 1

2 n; 1
2 q + 1

2 n− N + 1, 1
2 n; 1

4 k2)

+
πn/2k2N−q−n(1

2 q + 1
2 n− N − 1)!

(N − 1
2 q− 1)!22N−q−n 1F2(N; N − 1

2 q, N + 1− 1
2 q− 1

2 n; 1
4 k2) (A4.1)

where

1F2(a; b, c; x) = 1 +
a

1!bc
x +

a(a + 1)
2!b(b + 1)c(c + 1)

x2 + ...
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The first of these results can be obtained by choosing a polar axis to lie along the

direction of k so that k · r = kr cos θ1 and

F(k) =
∞∫
−∞

f (r) exp(−ik · r)dr =
∞∫

0

f (r)rn−1
π∫

0

exp(−ikr cos θ1) sinn−2 θ1dθ1

×
π∫

0

...
2π∫
0

sinn−3 θ2... sin θn−2dθ2...dθn−1dr

=
∞∫

0

f (r)rn−1 2π(n−1)/2

(1
2 n− 3

2)!

π∫
0

exp(−ikr cos θ1) sinn−2 θ1dθ1dr

using
π∫

0

sinν dθ =
(1

2 ν− 1
2)!π1/2

(1
2 ν)!

.

Now,

−
(

∂2

∂k2
1

+
∂2

∂k2
2

+ ... +
∂2

∂k2
n

)
=

∞∫
−∞

f (r)(r2
1 + r2

2 + ... + r2
n) exp(−ik · r)dnr

and therefore(
1− ∂2

∂k2
1
− ∂2

∂k2
2
− ...− ∂2

∂k2
n

)N

=
∞∫
−∞

f (r)(1 + r2)N exp(−ik · r)dnr.

Hence, we can write

F(k) =

(
1− ∂2

∂k2
1

+
∂2

∂k2
2
− ...− ∂2

∂k2
n

)N

(2π)n/2
∞∫

0

f (r)rn−1

(1 + r2)N

Jn−2
2

(kr)

(kr)(n/2)−1
dr.

(A4.2)
The ratio of two successive terms un+1/un in the infinite series for 1F2 is (a +
n)x/[(n + 1)(b + n)(c + n)] which tends to zero as n → ∞ for any finite x. Thus,

the series for 1F2 converges absolutely and uniformly with respect to x and the same

is true of its derivatives (provided that neither b or c is a negative integer or zero

when the series diverges). Therefore,(
∂2

∂k2
1

+
∂2

∂k2
2

+ ... +
∂2

∂k2
n

)
1F2(a; b, 1

2 n; 1
4 k2)

=
(b− 1)!(1

2 − 1)!
(a− 1)!

(
∂2

∂k2
1

+
∂2

∂k2
2

+ ... +
∂2

∂k2
n

)
∞

∑
s=0

(a + s− 1)!(1
2 k)2s

(b + s− 1)!(1
2 n + s− 1)!s!

=
(b− 1)!(1

2 n− 1)!
(a− 1)!

∞

∑
s=0

(a + s− 1)!(1
2 k)2s−2

(b + s− 1)!(1
2 n + s− 2)!(s− 1)!

.
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The term for s = 0 disappears so that, by replacing s by s + 1 we obtain(
∂2

∂k2
1

+
∂2

∂k2
2

+ ... +
∂2

∂k2
n
− 1

)
1F2(a; b, 1

2 n; 1
4 k2)

=
(b− 1)!(1

2 n− 1)!
(a− 1)!

∞

∑
s=0

(a + s− 1)!(1
2 k)2s

(b + s)!(1
2 n + s− 1)!s!

(a + s− b− s)

=
a− b

b 1F2(a; b + 1, 1
2 n; 1

4 k2).

Hence, (
∂2

∂k2
1

+
∂2

∂k2
2

+ ... +
∂2

∂k2
n
− 1

)N

1F2(a; b, 1
2 n; 1

4 k2)

=
(a− b)(a− b− 1)...(a− b− N + 1)

b(b + 1)...(b + N − 1) 1F2(a; b + N, 1
2 n; 1

4 k2). (A4.3)

In the first term of equation (A4.1) a = 1
2(q + n), b = 1

2(q + n) − N + 1 so that

a− b = N + 1 with the result that the right hand side of the equation vanishes. For

the second term of equation (A4.1), consider, with b > 0(
∂2

∂k2
1

+
∂2

∂k2
2

+ ... +
∂2

∂k2
n

)
k2b

1F2(a; b + 1
2 n, b + 1; 1

4 k2)

=
(b + 1

2 n− 1)!b!
(a− 1)!

∞

∑
s=0

(a + s− 1)!k2b+2s−2

4s−1(b + 1
2 n− 2 + s)!(b + s− 1)!s!

as above. Hence,(
∂2

∂k2
1

+
∂2

∂k2
2

+ ... +
∂2

∂k2
n
− 1

)
k2b

1F2(a; b + 1
2 n, b + 1; 1

4 k2) =
(b + 1

2 n− 1)!b!
(a− 1)!

×
[

(a− 1)!4k2b−2

(b + 1
2 n− 2)!(b− 1)!

+
∞

∑
s=0

(a + s− 2)!(a− 1)k2b+2s−2

4s−1(b + 1
2 n− 2 + s)!(b + s− 1)!s!

]
from which is evident that(

∂2

∂k2
1

+
∂2

∂k2
2

+ ... +
∂2

∂k2
n
− 1

)
k2b

1F2(1; b + 1
2 n, b + 1; 1

4 k2) = (b + 1
2 n− 1)4bk2b−2

(A4.4)
and (

∂2

∂k2
1

+
∂2

∂k2
2

+ ... +
∂2

∂k2
n
− 1

)
k2b

1F2(a; b + 1
2 n, b + 1; 1

4 k2)

= 4b(b + 1
2 n− 1)k2b−2

1F2(a− 1; b + 1
2 n− 1, b; 1

4 k2), a 6= 1.

Consequently, if a 6= 1 or 2, then since(
∂2

∂k2
1

+
∂2

∂k2
2

+ ... +
∂2

∂k2
n

)
kq = q(q + n− 2)kq−2
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for all q except those for which q + n = 2, 0,−2,−4, ...,(
∂2

∂k2
1

+
∂2

∂k2
2

+ ... +
∂2

∂k2
n
− 1

)
k2b

1F2(a; b + 1
2 n, b + 1; 1

4 k2)

= 42b(b− 1)(b + 1
2 n− 1)(b + 1

2 n− 2)k2b−4
1F2(a− 2; b + 1

2 n− 2, b− 1; 1
4 k2)

where, in deriving this result, since it cannot be assumed that b − 1 > 0, with

b = N − 1
2 q− 1

2 n we impose the condition q = 2m (m = 0, 1, 2, ...). Thus, using

equation (A4.4) we can write(
∂2

∂k2
1

+
∂2

∂k2
2

+ ... +
∂2

∂k2
n
− 1

)N

k2N−q−n
1F2(N; N − 1

2 q, N + 1− 1
2 q− 1

2 n; 1
4 k2)

=

(
∂2

∂k2
1

+
∂2

∂k2
2

+ ... +
∂2

∂k2
n
− 1

)
4N−1 (N − 1

2 q− 1
2 n)!(N − 1

2 q− 1)!k−q−n+2

(−1
2 q− 1

2 n + 1)!(−1
2 q)!

1F2(1;−1
2 q + 1,−1

2 q− 1
2 n + 2; 1

4 k2) =
(N − 1

2 q− 1
2 n)!(N − 1

2 q− 1)!4Nk−q−n

(−1
2 q− 1

2 n)!(−1
2 q− 1)!

.

(A4.5)
Using equations (A4.5) and (A4.3) in equations (A4.1) and (A4.2) we find that

F(k) =
(N − 1

2 q− 1
2 n)!(1

2 q + 1
2 n− N − 1)!

(−1
2 q− 1

2 n)!(−1
2 q− 1)!

2q+n(−1)Nπn/2k−q−n.

Finally, using the formula

z!(−z)! =
πz

sin πz
we have

(N − 1
2 q− 1

2 n)!(1
2 q + 1

2 n− N − 1)! =
π

sin π(1
2 q + 1

2 n− N)

=
(−1)Nπ

sin 1
2 π(q + n)

= (1
2 q + 1

2 n− 1)!(−1
2 q− 1

2 n)!(−1)N

so that

F(k) =
(1

2 q + 1
2 n− 1)!

(−1
2 q− 1)!

2q+nπn/2k−q−n.

We can write this result using the Gamma function notation where

m! = Γ(m + 1) =
∞∫

0

tm exp(−pt)dt

which generalizes to values of m which are non-integer. Then,

F(k) =
Γ
(

q+n
2

)
Γ
(
− q

2

) 2q+nπn/2k−q−n.
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Hence, in the case when n = 1,

F(k) = F1[rq] =
Γ
(

1+q
2

)
Γ
(
− q

2

) 21+q√πk−q−1

or

F1

[
1

r1−q

]
= 2q√π

Γ
( q

2

)
Γ
(

1−q
2

) 1
kq

and thus,

F−1
1

[
1

(ik)q

]
=

α1(q)
r1−q

where

α1(q) =
1

(2i)q√π

Γ
(

1−q
2

)
Γ
( q

2

) .

For n = 2

F2 [rq] =
Γ
(

q+2
2

)
Γ
(
− q

2

) 2q+2πk−q−2

or

F2

[
1

r2−q

]
= 2qπ

Γ
( q

2

)
Γ
(
1− q

2

) 1
kq

and hence,

F−1
2

[
1

(ik)q

]
=

α2(q)
r2−q

where

α2(q) =
1

(2i)qπ

Γ
(
1− q

2

)
Γ
( q

2

) .

Thus, in general, ignoring scaling by α1(q), α2(q), α3(q), ...,

F−1
n

[
1

(ik)q

]
∼ 1

rn−q , n = 1, 2, 3, ...



YHTEENVETO (SUMMARY IN FINNISH)

Sähkömagneettinen sirontateoria on oleellinen, jotta voidaan ymmärtää vuorovaiku-

tusta sähkömagneettisten aaltojen ja epähomogenisten dielektristen materiaalien

välillä. Teoria avaa teknisen tiedon koskien suurta määrää sähkömagneettisia jär-

jestelmiä, esimerkiksi optiikasta radio- ja mikroaaltokuvannukseen. Tarkkojen sironta-

mallien kehittäminen on erityisen tärkeätä kuvanymmärtämisen alalla ja tulkittaessa

sirontatapausten synnyttämiä sähkömagneettisia signaaleja. Tätä päämäärää varten

on olemassa joukko menettelytapoja, joita voidaan käyttää. Suhteellisen yksinker-

taisia geometrisia konfiguraatioita varten käytetään likiarvometodeja kehittämään

muuntamista kohdetasosta (missä sirontatapaukset tapahtuvat) kuvatasolle (missä

tapahtuu jonkinasteinen sirontakenttä). Yleisin likiarvo on heikko sirontalikiarvo, jo-

ka ei ota huomioon monien sirontavuorovaikutusten vaikutusta. Tämän väitöskirjan,

jonka nimi on Sähkömagneettisen sironnan ja käänteisen sironnan ratkaisujen käyt-

täminen digitaalisten signaalien ja kuvien analyysissä ja prosessoinnissa, ensimmäi-

nen osa tutkii tämän likiarvon käyttöä sähkömagneettisten kuvannusjärjestelmien

mallinnuksessa. Seuraavaksi väitöstyössä tarkastellaan lähestymistapaa, joka perus-

tuu voimakkaaseen sirontajärjestelmään, johon kuuluu sirontakentän autokorrelaa-

tio kehitettävissä käänteisissä sirontaratkaisuissa. Kun sirontavuorovaikutukset tule-

vat enenevästi monimutkaisemmiksi (esim. monet sironnat satunnaisvälineissä), de-

terministisen sirontateorian sovellukset tulevat vaikeiksi käyttää käytännössä. Näi-

nollen käänteinen sirontaongelma ei välttämättä tule hyvin esitetyksi. Tästä syystä

tarkastellaan useita muita lähestymistapoja, jotka sisältävät tilastollisten mallien

kehittämisen itse sirontakentälle mieluummin kuin sirontajalle. Väitöskirjassa tutki-

taan diffuusion käyttöä, joka perustuu malleille ratkaista käänteinen sirontaongelma,

kun esiintyy voimakkaita sirontaprosesseja, esim. monisirontaa satunnaisvälineistä.

Seuraavaksi lähestymistapaa laajennetaan ja käsittelään välitapausta mallintamalla

sirontaprosesseja käyttäen murtolukuista diffuusioyhtälöä. Lopuksi esitetään mata-

lataajuinen sirontatoria, joka johtaa esitykseen, että valo ja muut korkeataajuinen

sähkömagneettisten aaltojen kentät voidaan heikosti difrahoida (taivuttaa) mata-

lataajuisella sirontakentällä. Tämä johtaa uuteen tulkintaan gravitaatiolinssistä, jo-

ta tutkitaan kysymyksen kautta, miksi näkyvässä spektrissä havaitut Einsteinin

renkaat ovat sinisiä.


