
Dublin Institute of Technology
ARROW@DIT

Conference Papers School of Science and Computing

2013-5

A performance analysis of WS-* (SOAP) and
RESTful Web Services for Implementing Service
and Resource Orientated Architectures
Philip Markey
Institute of Technology, Tallaght

Gary Clynch
Institute of Technology, Tallaght

Follow this and additional works at: http://arrow.dit.ie/ittscicon

Part of the Computer and Systems Architecture Commons, and the Library and Information
Science Commons

This Conference Paper is brought to you for free and open access by the
School of Science and Computing at ARROW@DIT. It has been accepted
for inclusion in Conference Papers by an authorized administrator of
ARROW@DIT. For more information, please contact
yvonne.desmond@dit.ie, arrow.admin@dit.ie, brian.widdis@dit.ie.

This work is licensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 License

Recommended Citation
Markey, P., Clynch, G. : A performance analysis of WS-* (SOAP) and RESTful Web Services for Implementing Service and Resource
Orientated Architectures, The 12th Information Technology and Telecommunications (IT&T) Conference, Athlone IT, 2013

http://arrow.dit.ie?utm_source=arrow.dit.ie%2Fittscicon%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://arrow.dit.ie/ittscicon?utm_source=arrow.dit.ie%2Fittscicon%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://arrow.dit.ie/ittsci?utm_source=arrow.dit.ie%2Fittscicon%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://arrow.dit.ie/ittscicon?utm_source=arrow.dit.ie%2Fittscicon%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=arrow.dit.ie%2Fittscicon%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1018?utm_source=arrow.dit.ie%2Fittscicon%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1018?utm_source=arrow.dit.ie%2Fittscicon%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:yvonne.desmond@dit.ie,%20arrow.admin@dit.ie,%20brian.widdis@dit.ie
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

A Comparative Analysis of WS-* (SOAP) & RESTful Web

Services for use in Service/Resource Orientated

Architecture

Philip Markey, Gary Clynch

Department of Computing, Institute of Technology Tallaght, Tallaght, Dublin 24

phil.markey@gmail.com

gary.clynch@ittdublin.ie

Abstract

Over the past number of years, the architectural styles that have been utilised for distributed

computing with the use of Web Services have been developing and evolving, leading to numerous

debates as to the suitability of the differing styles. This has led to two main supporting stands

being developed, WS-* Standards and Representational State Transfer. With this there have been
points made against the presumed complexities of the WS-* and favour made towards

Representational State Transfer with the usage of the standardised Web API.

In this dissertation, the author gives an overview of both of the Web Service styles and their

associated architectures, as well as presenting experimental results in which to demonstrate the

performance of each style, over a number of test scenarios.

Keywords: SOAP, REST, RESTful, Resource Oriented Architecture, Service Oriented Architecture.

1 Introduction

Within the area of distributed computing, two key areas of Service Oriented Architecture (SOA) and

Resource Orientated Architecture (ROA) have been viewed as competitive styles, each encompassing
differing orientations [10]. The first, SOA, is generally associated with SOAP alongside the WS-*

stack and the latter ROA, tends to be associated with the Representational State Transfer (REST) style.

Both approaches are adaptable to accomplish a distributed system but there are points that can be
drawn both for and against with each. For example it can be viewed that the possible complexities of

the WS-* stack could be viewed negatively when looking towards a comparative of the simplistic use

of the native Web Application Programming Interface (API) as used in a RESTful approach. With the
same view point, the opposite could also be surmised as, the simplistic use of the Web API, may not be

sophisticated enough to be used with an enterprise system and therefore the mature and well

documented WS-* stack should be utilised in its place.

This paper has three sections preceding a conclusion. First a brief overview of SOA, ROA, SOAP and

REST is given. Then a descriptive is provided of a benchmark environment and testing scenarios,

which is finally followed by the result analysis based on the benchmark testing that was conducted.

2 An Exploration into SOA/ROA & Web Services

SOA is a flexible set of design principles, when utilised efficiently can provide a loosely coupled set of

services via a single endpoint, that can form one, all-encompassing application that simplifies

machine-to-machine communication [6]. For this SOA services utilise a set of standards that allow

applications to be published, discovered and invoked such as the Web Services Description Language

(WSDL) [3].

SOA services focus is on providing a schema and message-based interaction with an application [3].

XML is the common message format that is used for SOA services; the SOAP standard is normally

adopted containing an XML payload [6].

At a fundamental level, the SOAP-based architecture revolves around the transmission of XML-

encoded messages over a transport medium and is utilised in the formal Web Service approach. The
specifics of a SOAP service is that it follows a very well defined set of rules that are prescribed for in

the WSDL files, which are essentially XML structured files adhering to a W3C-specified grammar [5].

ROAs concepts are based on three points of Resources, URI and Representations, which are provided
over multiple endpoints, each linking to a single resource [7]. Resources are objects that can be

referenced and stored on a computer; this could be the returning result from a SQL query or a bit

stream representation of a document. Representations are simply the state/format of data of the
required resource.

The Resource is referenced by the use of a URI [1]. The URI is essentially just the name and address
of the requested resource, with best practices should be as descriptive as possible to best match the

resource that is being addressed.

REST is a set of specific guidelines that can be covered to produce an implementation of a RESTful
service [7]. It can be used to design a Web Service that focuses on system resources, including how

resource states are addressed and transferred over HTTP [8].

REST is based on a set of transfer operations that are universal to any data storage and retrieval

system. These operations are commonly referred to by the acronym CRUD as shown in Table 1: Core

HTTP CRUD Methods, which stands for Create, Read, Update, and Delete.

CRUD REST

CREATE POST/PUT Initialise the state of a resource at a given URI

READ GET Retrieve the current state of the resource

UPDATE PUT Modify the state of the resource

DELETE DELETE Clear a resource.

Table 1: Core HTTP CRUD Methods

3 Benchmark – Experiment

 The Benchmark Environment 3.1

Figure 1: Benchmark Network Topology

As displayed in Figure 1: Benchmark Network Topology, the benchmark environment is a simple set

up, that consists of a Gigabit network, a server with a Windows Server 2008 R2 Enterprise installation
and a Dell XPS.

Within this network set up, the server acts as the Web Service host, hosted in Internet Information

Services 7 (IIS7). The server is also running an instance of SQL Server 2008 R2, which is accessible
to the Web Services.

On the XPS there is an intermediary piece of software installed that acts as a proxy host, called
Fiddler2 [4]. With Fiddler2, HTTP traffic passes through it for traffic in both directions and has the

capability to view this traffic as it passes through and provides the ability to be able to inspect the

traffic.

To further extend the capabilities of Fiddler2, a plugin called StresStimulus [9] is installed;

StresStimulus is a load testing. Using StresStimulus it is possible to record a number of traffic

scenarios and then replay the same scenarios under various load patterns, with a varying number of
virtual users while monitoring how the site is performing under that load.

In the benchmarking scenarios used in this session, Fiddler2 is used to capture and analyse the traffic
and then StresStimulus is used to replay the same request traffic over again for each repeated test. In

all test scenarios only one virtual user is ever used.

 Benchmark Scenarios 3.2

For the benchmarking session there are two scenarios that are carried out to allow a comparison to be

drawn. Firstly, the service calls are used to request an object from each of the respective Web
Services. The object is a country record generated from the database on the test server. This scenario

is used to demonstrate the size and weight of each request/response and demonstrate the affect the

wrapping protocol can have.

The Second scenario comprises of two parts, the first takes a similar format as the first scenario, each

service call will be requesting an object from its respective service and the service will be fulfilling

this by use of a call the database. For this scenario the request is for a collection of 249 country

objects. In this test the calls are repeated over a set timeframe of one minute, with each call being

placed consecutively. This would demonstrate not just the weight of the call and its associated

wrapping protocol but the amount of traffic that can be produced by each service with an iterative call.

In the second part, is only applicable to the RESTful service calls with their use of the GET Header in

the Web API. In this section the test is run again with the caching abilities enabled. From this, it will
again show the weight of the traffic that is transmitted and show the number of calls that could be

successfully placed within the given timeframe. Further to this, show what affect enabling caching

can have when looking at services request/responses.

4 Results & Analysis

 Test One 4.1

In the first test, both of services had a method invoked that interacted with a database via the Entity

Framework and retrieved a single item. This item was then packaged up and transported back to the
client in the various formats. This was used to demonstrate the differences in size of the sending and

returning single payloads.

Figure 2: SOAP vs. REST Single DB Item Comparison

 SOAP JSON XML

Total Bytes Sent 505 128 127

Total Bytes Received 826 496 836

Total Overall 1331 624 963

Table 2: SOAP vs. REST Single DB Item Comparison

Within this test, shown in Figure 2: SOAP vs. REST Single DB Item Comparison and Table 2: SOAP

vs. REST Single DB Item Comparison, differences can be seen as to the comparative between the

SOAP and RESTful calls. SOAP sending 505 bytes, whereas both the JSON and the XML RESTful
calls only sending 128 bytes and 127 bytes respectively, this representing only 25% the size of the

SOAP request. On the received data, the XML RESTful call returns an extra 10 bytes compared to the

SOAP response but the JSON call received little over half this with only 496 bytes.

In the overall data transported for this test case, the data sent/received by the RESTful XML service is
72% that of the size of the SOAP service but the JSON service is smaller again, with a total data

transported representing just 47% that of the SOAP service and 65% that of the XML service.

 Test Two 4.2

Test two comprised of two parts, firstly both types of service were used to call a method that would

return a collection of items from the database (249 items per call) repeatedly over a minute duration,
with each call being placed consecutively. After this the test was carried out a second time for the

RESTful service, this time with caching enabled.

Figure 3: SOAP vs. REST DB Collection
Comparison - Bytes Sent/Sec

Figure 4: SOAP vs. REST DB Collection
Comparison - Bytes Received/Sec

 SOAP JSON XML JSON
(Caching)

XML
(Caching)

Total Bytes Sent 981682.5 289230 260022 868937 810619

Total Bytes Received 185677951.25 128586060 199181080 961354 1054510

Total Overall 186659633.75 128875290 199441102 1830291 1865129

Table 3: SOAP vs. REST DB Collection Comparison

From Figure 3: SOAP vs. REST DB Collection Comparison - Bytes Sent/Sec, Figure 4: SOAP vs.

REST DB Collection Comparison - Bytes Received/Sec and Table 3: SOAP vs. REST DB Collection
Comparison we can see that the weight of the calls from the SOAP service is relatively heavy in

comparison to the RESTful calls and the responses from the XML RESTful service is yet again

marginally heavier than it SOAP counterpart as previously noted.

When we take a view of the total bytes sent/received for each call service, it can be noted that in the

scenario where caching is not enabled, the RESTful XML call is in fact larger when compared to the

SOAP service call by 6.8%, with the JSON service still the smallest at 64.6% the total size of the XML
call and this representing 69% that of the SOAP service.

The interesting difference comes with caching is enabled. Although the RESTful requests increase,
they are still significantly less than that which is required by the SOAP service. With this, the

responses are reduced by a distinct margin due to the server only having to return a header message,

which states that no change has occur to the data and a suppressed body. This in turn changes the total

data transported to show that with caching enabled the RESTFul calls are 0.9% that of their SOAP

counterpart.

Figure 5: SOAP vs. REST Total Requests Send/Received

 SOAP JSON XML JSON
(Caching)

XML (Caching)

Total requests 7,885 9,330 8,456 16,632 17,559

Table 4: SOAP vs. REST Total Requests Send/Received

Also, if we are to look at the total amount of requests that are being sent and received during the

minute test, as shown in Figure 5: SOAP vs. REST Total Requests Send/Received and Table 4: SOAP

vs. REST Total Requests Send/Received, both the services were able to process a similar number of

calls without caching enable. When the caching was enabled for the RESTful service calls, the service
is able to process approximately double the amount from the previous iteration.

 Analysis 4.3

With both SOAP and REST termed under the same heading of Web Services, they can both stand

separately with their architectural styles for their uses in SOA and ROA respectively and each can

have significantly differing effects on a network load.

A major point for utilising a RESTful service is the fact that a RESTful service follows the Web API

and uses the appropriate headers of GET, POST, PUT and DELETE and therefore it can make full use
of a Conditional GET header, enable caching of resources that can improve scalability of a system.

As highlighted the results from the benchmark testing. A RESTful service and in particular when

using the messaging format of JSON, can be significantly lighter that its SOAP counterpart when
traversing a network.

When the RESTful service comparison is shifted towards the XML messaging format, the results show
that without caching, the choice of messaging format could be crucial as the XML format was out

performed by both other services, with it being 6.8% larger than the SOAP service and 54.8% larger

than its JSON counterpart in relation to total data transported for the scenario.

Once the caching was enabled for the testing, the results show that there would be very little to choose

between the two RESTful services, given that no change occurred to the underlying data. In the

scenario, once caching was enabled, this then showed the total weight of data to be transported

dropped to approximately 1% that of the SOAP service; which is unable to take advantage of the

HTTP caching capabilities.

5 Conclusion

 Conclusion 5.1

From the information put forward in this dissertation, as to which would be the more discerning
choice, it would appear that due to the low impact of a RESTful service on the transport medium and

with the utilisation of the HTTP headers enabling the use of Conditional GET caching, a RESTful

service could be selected as the optimal choice and in particular the use of the JSON messaging

format. Of course if fully standardised protocol usage was required and the transport impact was not a
concern then the only way would be to utilise the WS-* standards.

 Future Work 5.2

To further enhance this analysis with future work, we could extend the comparison to also include the

development to the RESTful services, by means of also including OData alongside the JSON and

XML RESTful services.

Also within an area of drawing a comparison of the WS-* stack and the RESTful services further work

could be looked towards a discussion to give complete low level comparison of the both the
conceptual and technological concepts that can be seen between the two styles, to be able to give a full

quantitative technical comparison basing on the architectural principles that can been drawn between

them.

From this lower level view, it then may be possible to present a decision tree that could be used when

making a selection on the most suitable usage, based on the initial development requirements. Taking

the technical development points and comparing them with the solutions and possible alternatives that
may be offered from each of the services. From here it would be possible to add a weighting to finally

draw a decision.

6 References

[1] Berners-Lee, T. . (2005) Uniform Resource Identifier (URI): Generic Syntax [Online]. Available

from: http://labs.apache.org/webarch/uri/rfc/rfc3986.html [accessed: 17/12/11]

[2] Fielding, R.T. (2000) Architectural Styles and the Design of Network-based Software
Architectures. Doctoral dissertation, University of California, Irvine.

[3] Meier, J.D., Homer, A., Hill, D., Taylor,J., Bansode, P., Wall, L, Boucher, R. & Bogawat, A.

(2008) Application Architecture Guide 2.0, Patterns & Practices

[4] Microsoft Corporation. (2009) Fiddler2 [Online]. Available from:

http://www.fiddler2.com/fiddler2/ [accessed: 01/10/12]

[5] Mulligan, G. & Graˇcanin, D. (2009) A Comparison of SOAP and Rest Implementations of a

Service Based interaction Independence Middleware Framework

[6] Ort, E. (2005) Service-Oriented Architecture and Web Services: Concepts, Technologies, and

http://labs.apache.org/webarch/uri/rfc/rfc3986.html

Tools

[7] Richardson, L. & Ruby, S. (2007) RESTful Web Services

[8] Rodriguez, A. (2008) RESTful Web Services: The basics. [Online]. Available from:

http://www.ibm.com/developerworks/webservices/library/ws-RESTful/index.html [accessed:
09/10/10]

[9] Stimulus Technology (2011) StresStimulus [Online]. Available from:

http://stresstimulus.stimulustechnology.com/

[10] Tsai, W. T., Zhou, X. (2008) SOA Simulation and Verification by Event-driven Policy

Enforcement. pp.165-172, 41st Annual Simulation Symposium 2008

http://www.ibm.com/developerworks/webservices/library/ws-restful/index.html
http://www.ibm.com/developerworks/webservices/library/ws-restful/index.html
http://www.ibm.com/developerworks/webservices/library/ws-restful/index.html
http://www.ibm.com/developerworks/webservices/library/ws-restful/index.html
http://www.ibm.com/developerworks/webservices/library/ws-restful/index.html

	Dublin Institute of Technology
	ARROW@DIT
	2013-5

	A performance analysis of WS-* (SOAP) and RESTful Web Services for Implementing Service and Resource Orientated Architectures
	Philip Markey
	Gary Clynch
	Recommended Citation

	tmp.1389712708.pdf.QYqG1

